Depression detection based on linear and nonlinear speech features in I-vector/SVDA framework

[1]  Paula Lopez-Otero,et al.  Analysis of gender and identity issues in depression detection on de-identified speech , 2021, Comput. Speech Lang..

[2]  N. Salari,et al.  Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis , 2020, Globalization and Health.

[3]  Zhou Aibao,et al.  Epidemic of COVID-19 in China and associated Psychological Problems , 2020, Asian Journal of Psychiatry.

[4]  Yeen Huang,et al.  Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: a web-based cross-sectional survey , 2020, Psychiatry Research.

[5]  W. Wei,et al.  Study on the public psychological states and its related factors during the outbreak of coronavirus disease 2019 (COVID-19) in some regions of China , 2020, Psychology, health & medicine.

[6]  Wenjun Cao,et al.  The psychological impact of the COVID-19 epidemic on college students in China , 2020, Psychiatry Research.

[7]  G. Rubin,et al.  The psychological impact of quarantine and how to reduce it: rapid review of the evidence , 2020, The Lancet.

[8]  Mohammad Soleymani,et al.  AVEC 2019 Workshop and Challenge: State-of-Mind, Detecting Depression with AI, and Cross-Cultural Affect Recognition , 2019, AVEC@MM.

[9]  Bhiksha Raj,et al.  Querying Depression Vlogs , 2018, 2018 IEEE Spoken Language Technology Workshop (SLT).

[10]  Fabien Ringeval,et al.  AVEC 2018 Workshop and Challenge: Bipolar Disorder and Cross-Cultural Affect Recognition , 2018, AVEC@MM.

[11]  Lang He,et al.  Automated depression analysis using convolutional neural networks from speech , 2018, J. Biomed. Informatics.

[12]  Fabien Ringeval,et al.  AVEC 2017: Real-life Depression, and Affect Recognition Workshop and Challenge , 2017, AVEC@ACM Multimedia.

[13]  Daniel Erro,et al.  Influence of speaker de-identification in depression detection , 2017, IET Signal Process..

[14]  John H. L. Hansen,et al.  i-Vector/PLDA speaker recognition using support vectors with discriminant analysis , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  Sridha Sridharan,et al.  A study on the effects of using short utterance length development data in the design of GPLDA speaker verification systems , 2017, International Journal of Speech Technology.

[16]  John H. L. Hansen,et al.  An Investigation of Deep-Learning Frameworks for Speaker Verification Antispoofing , 2017, IEEE Journal of Selected Topics in Signal Processing.

[17]  Panayiotis G. Georgiou,et al.  Multimodal and Multiresolution Depression Detection from Speech and Facial Landmark Features , 2016, AVEC@ACM Multimedia.

[18]  Fabien Ringeval,et al.  AVEC 2016: Depression, Mood, and Emotion Recognition Workshop and Challenge , 2016, AVEC@ACM Multimedia.

[19]  John H. L. Hansen,et al.  Joint information from nonlinear and linear features for spoofing detection: An i-vector/DNN based approach , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[20]  Seyed Omid Sadjadi,et al.  Speaker age estimation on conversational telephone speech using senone posterior based i-vectors , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[21]  Paula Lopez-Otero,et al.  Assessing speaker independence on a speech-based depression level estimation system , 2015, Pattern Recognit. Lett..

[22]  Hossein Sameti,et al.  Telephony text-prompted speaker verification using i-vector representation , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[23]  Vidhyasaharan Sethu,et al.  Relevance vector machine for depression prediction , 2015, INTERSPEECH.

[24]  John H. L. Hansen,et al.  I-vector based physical task stress detection with different fusion strategies , 2015, INTERSPEECH.

[25]  Tiago H. Falk,et al.  Model Fusion for Multimodal Depression Classification and Level Detection , 2014, AVEC '14.

[26]  Björn W. Schuller,et al.  AVEC 2014: 3D Dimensional Affect and Depression Recognition Challenge , 2014, AVEC '14.

[27]  Dimitra Vergyri,et al.  The SRI AVEC-2014 Evaluation System , 2014, AVEC '14.

[28]  Carmen García-Mateo,et al.  A study of acoustic features for the classification of depressed speech , 2014, 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).

[29]  Roland Göcke,et al.  Diagnosis of depression by behavioural signals: a multimodal approach , 2013, AVEC@ACM Multimedia.

[30]  Björn W. Schuller,et al.  AVEC 2013: the continuous audio/visual emotion and depression recognition challenge , 2013, AVEC@ACM Multimedia.

[31]  Man-Wai Mak,et al.  Boosting the Performance of I-Vector Based Speaker Verification via Utterance Partitioning , 2013, IEEE Transactions on Audio, Speech, and Language Processing.

[32]  Rui Xia,et al.  Using i-Vector Space Model for Emotion Recognition , 2012, INTERSPEECH.

[33]  Nicholas B. Allen,et al.  Early prediction of major depression in adolescents using glottal wave characteristics and Teager Energy parameters , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[34]  Patrick Kenny,et al.  Front-End Factor Analysis for Speaker Verification , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[35]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[36]  Nicholas B. Allen,et al.  Detection of Clinical Depression in Adolescents’ Speech During Family Interactions , 2011, IEEE Transactions on Biomedical Engineering.

[37]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[38]  Lukás Burget,et al.  Language Recognition in iVectors Space , 2011, INTERSPEECH.

[39]  Douglas A. Reynolds,et al.  Language Recognition via i-vectors and Dimensionality Reduction , 2011, INTERSPEECH.

[40]  Ying Tan,et al.  Discriminant analysis via support vectors , 2010, Neurocomputing.

[41]  Patrick Kenny,et al.  A Study of Interspeaker Variability in Speaker Verification , 2008, IEEE Transactions on Audio, Speech, and Language Processing.

[42]  Patrick Kenny,et al.  Joint Factor Analysis Versus Eigenchannels in Speaker Recognition , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[43]  C. Mathers,et al.  Projections of Global Mortality and Burden of Disease from 2002 to 2030 , 2006, PLoS medicine.

[44]  John H. L. Hansen,et al.  Nonlinear feature based classification of speech under stress , 2001, IEEE Trans. Speech Audio Process..

[45]  A. Beck,et al.  Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. , 1996, Journal of personality assessment.

[46]  H. M. Teager,et al.  Evidence for Nonlinear Sound Production Mechanisms in the Vocal Tract , 1990 .

[47]  H. Teager Some observations on oral air flow during phonation , 1980 .