MicroRNA therapeutics: towards a new era for the management of cancer and other diseases

[1]  M. Mayr,et al.  MicroRNAs in Cardiovascular Disease. , 2016, Journal of the American College of Cardiology.

[2]  M. Fabbri,et al.  Essential role of miRNAs in orchestrating the biology of the tumor microenvironment , 2016, Molecular Cancer.

[3]  Keunchil Park,et al.  MRX34, a liposomal miR-34 mimic, in patients with advanced solid tumors: Final dose-escalation results from a first-in-human phase I trial of microRNA therapy. , 2016 .

[4]  Chandra Sekhar Pedamallu,et al.  Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas , 2016, Nature Genetics.

[5]  George A Calin,et al.  miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. , 2016, Cancer discovery.

[6]  G. Saldanha,et al.  microRNA-10b is a prognostic biomarker for melanoma , 2016, Modern Pathology.

[7]  A. Brenner,et al.  Abstract C43: Safety, tolerability, and clinical activity of MRX34, the first-in-class liposomal miR-34 mimic, in patients with advanced solid tumors , 2015 .

[8]  Wei Zhang,et al.  Hypoxia-upregulated microRNA-630 targets Dicer, leading to increased tumor progression , 2015, Oncogene.

[9]  Hsien-Da Huang,et al.  miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database , 2015, Nucleic Acids Res..

[10]  G. Calin,et al.  PDL1 Regulation by p53 via miR-34 , 2015, Journal of the National Cancer Institute.

[11]  T. Jacks,et al.  Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. , 2015, Cancer discovery.

[12]  K. Polyak,et al.  Combining miR-10b-Targeted Nanotherapy with Low-Dose Doxorubicin Elicits Durable Regressions of Metastatic Breast Cancer. , 2015, Cancer research.

[13]  G. Reid,et al.  Abstract 3976: Targeted delivery of a synthetic microRNA-based mimic as an approach to cancer therapy , 2015 .

[14]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[15]  A. Ślusarz,et al.  The two faces of miR-29 , 2015, Journal of cardiovascular medicine.

[16]  Ilya Shmulevich,et al.  Augmentation of response to chemotherapy by microRNA-506 through regulation of RAD51 in serous ovarian cancers. , 2015, Journal of the National Cancer Institute.

[17]  R. Gregory,et al.  MicroRNA biogenesis pathways in cancer , 2015, Nature Reviews Cancer.

[18]  M. Stoffel,et al.  The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes , 2015, Nature Medicine.

[19]  Joyce A. Wilson,et al.  Regulation of Hepatitis C Virus Genome Replication by Xrn1 and MicroRNA-122 Binding to Individual Sites in the 5′ Untranslated Region , 2015, Journal of Virology.

[20]  A. Mele,et al.  Hepatitis C Virus RNA Functionally Sequesters miR-122 , 2015, Cell.

[21]  X. Chen,et al.  Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. , 2015, Cellular signalling.

[22]  N. Pavlakis,et al.  P1.02MesomiR 1: A Phase I study of TargomiRs in patients with refractory malignant pleural mesothelioma (MPM) and lung cancer (NSCLC) , 2015 .

[23]  F. Slack,et al.  Combinatorial Action of MicroRNAs let-7 and miR-34 Effectively Synergizes with Erlotinib to Suppress Non-small Cell Lung Cancer Cell Proliferation , 2015, Cell cycle.

[24]  M. Koutsilieris,et al.  The role of the insulin-like growth factor-1 system in breast cancer , 2015, Molecular Cancer.

[25]  Mihaela Zavolan,et al.  miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. , 2015, Nature chemical biology.

[26]  Christopher B. Howard,et al.  Nanocell targeting using engineered bispecific antibodies , 2014, mAbs.

[27]  Amy Chan,et al.  Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. , 2014, Journal of the American Chemical Society.

[28]  L. van Doorn,et al.  In Vitro Antiviral Activity and Preclinical and Clinical Resistance Profile of Miravirsen, a Novel Anti-Hepatitis C Virus Therapeutic Targeting the Human Factor miR-122 , 2014, Antimicrobial Agents and Chemotherapy.

[29]  G. Calin,et al.  Hypoxia Mediated Downregulation of miRNA Biogenesis Promotes Tumor Progression , 2014, Nature Communications.

[30]  Christopher J. Cheng,et al.  MicroRNA silencing for cancer therapy targeted to the tumor microenvironment , 2014, Nature.

[31]  Guoying Yu,et al.  MicroRNA mimicry blocks pulmonary fibrosis , 2014, EMBO molecular medicine.

[32]  Paul C. Boutros,et al.  Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER , 2014, Nature Communications.

[33]  Dinesh Rakheja,et al.  Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours , 2014, Nature Communications.

[34]  P. Tassone,et al.  Mir-34: A New Weapon Against Cancer? , 2014, Molecular therapy. Nucleic acids.

[35]  K. Miyazono,et al.  MicroRNA regulons in tumor microenvironment , 2014, Oncogene.

[36]  G. Calin,et al.  Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. , 2014, Molecular therapy : the journal of the American Society of Gene Therapy.

[37]  M. Mayr,et al.  Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice , 2014, EMBO molecular medicine.

[38]  Zhonghan Li,et al.  Therapeutic targeting of microRNAs: current status and future challenges , 2014, Nature Reviews Drug Discovery.

[39]  Ilya Shmulevich,et al.  MiR‐506 suppresses proliferation and induces senescence by directly targeting the CDK4/6–FOXM1 axis in ovarian cancer , 2014, The Journal of pathology.

[40]  Y. Pekarsky,et al.  Role of miR-15/16 in CLL , 2014, Cell Death and Differentiation.

[41]  S. Kauppinen,et al.  Development of microRNA therapeutics is coming of age , 2014, EMBO molecular medicine.

[42]  D. Lodygin,et al.  IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. , 2014, The Journal of clinical investigation.

[43]  A. Sood,et al.  Dynamin 2 along with microRNA-199a reciprocally regulate hypoxia-inducible factors and ovarian cancer metastasis , 2014, Proceedings of the National Academy of Sciences.

[44]  T. Speed,et al.  A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression , 2014, Genes & development.

[45]  D. Srivastava,et al.  The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. , 2014, Cell stem cell.

[46]  Hui Zhou,et al.  starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data , 2013, Nucleic Acids Res..

[47]  Héloïse Ragelle,et al.  Chitosan-based siRNA delivery systems. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[48]  I. Rigoutsos,et al.  The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease , 2013, Cell Death and Differentiation.

[49]  R. Spizzo,et al.  Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. , 2013, Cancer discovery.

[50]  George A Calin,et al.  Tumour angiogenesis regulation by the miR-200 family , 2013, Nature Communications.

[51]  C. Hsieh,et al.  Loss of Let-7 MicroRNA Upregulates IL-6 in Bone Marrow-Derived Mesenchymal Stem Cells Triggering a Reactive Stromal Response to Prostate Cancer , 2013, PloS one.

[52]  T. Masuda,et al.  Loss of HOXD10 expression induced by upregulation of miR-10b accelerates the migration and invasion activities of ovarian cancer cells. , 2013, International journal of oncology.

[53]  J. Mi,et al.  MiR-21/Smad 7 signaling determines TGF-β1-induced CAF formation , 2013, Scientific Reports.

[54]  P. Gao,et al.  c-Myc modulates microRNA processing via the transcriptional regulation of Drosha , 2013, Scientific Reports.

[55]  C. Croce,et al.  MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer , 2013, Immunological reviews.

[56]  S. Kauppinen,et al.  Treatment of HCV infection by targeting microRNA. , 2013, The New England journal of medicine.

[57]  Yan Wang,et al.  EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2 , 2013, Nature.

[58]  Laisheng Li,et al.  MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1 , 2013, Clinical and Experimental Medicine.

[59]  Sheila M. Reynolds,et al.  Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. , 2013, Cancer cell.

[60]  T. Sellers,et al.  Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer , 2013, Oncogene.

[61]  G. Berx,et al.  Regulatory networks defining EMT during cancer initiation and progression , 2013, Nature Reviews Cancer.

[62]  L. Zentilin,et al.  Functional screening identifies miRNAs inducing cardiac regeneration , 2012, Nature.

[63]  E. Lengyel,et al.  MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. , 2012, Cancer discovery.

[64]  F. Slack,et al.  miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. , 2012, Cancer research.

[65]  E. Olson,et al.  MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles , 2012, Nature Reviews Drug Discovery.

[66]  I. Keklikoglou,et al.  MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways , 2012, Oncogene.

[67]  Hsien-Da Huang,et al.  MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. , 2012, The Journal of clinical investigation.

[68]  M. Caligiuri,et al.  Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. , 2012, The Journal of clinical investigation.

[69]  A. Bader miR-34 – a microRNA replacement therapy is headed to the clinic , 2012, Front. Gene..

[70]  P. Meda,et al.  Changes in MicroRNA Expression Contribute to Pancreatic β-Cell Dysfunction in Prediabetic NOD Mice , 2012, Diabetes.

[71]  Christopher J. Cheng,et al.  Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma , 2012, Proceedings of the National Academy of Sciences.

[72]  Jianping Cao,et al.  Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro. , 2012, Experimental cell research.

[73]  Christopher J. Cheng,et al.  The Duality of OncomiR Addiction in the Maintenance and Treatment of Cancer , 2012, Cancer journal.

[74]  Chad E. Grueter,et al.  A Cardiac MicroRNA Governs Systemic Energy Homeostasis by Regulation of MED13 , 2012, Cell.

[75]  Drew M. Pardoll,et al.  The blockade of immune checkpoints in cancer immunotherapy , 2012, Nature Reviews Cancer.

[76]  Mitsuo Kato,et al.  Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. , 2012, Journal of the American Society of Nephrology : JASN.

[77]  C. Croce,et al.  MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review , 2012, EMBO molecular medicine.

[78]  Aaron N. Chang,et al.  MicroRNA-21 Promotes Fibrosis of the Kidney by Silencing Metabolic Pathways , 2012, Science Translational Medicine.

[79]  J. Li,et al.  MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1 , 2012, Oncogene.

[80]  Steven J. M. Jones,et al.  Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. , 2012, The New England journal of medicine.

[81]  E. Olson,et al.  Inhibition of miR-15 Protects Against Cardiac Ischemic Injury , 2012, Circulation research.

[82]  Thomas D. Schmittgen,et al.  miR-221 silencing blocks hepatocellular carcinoma and promotes survival. , 2011, Cancer research.

[83]  Jun Wang,et al.  Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[84]  M. Esteller Non-coding RNAs in human disease , 2011, Nature Reviews Genetics.

[85]  Michael C. Ostrowski,et al.  Reprogramming of the Tumor Microenvironment by Stromal Pten-regulated miR-320 , 2011, Nature Cell Biology.

[86]  E. Olson,et al.  Therapeutic Inhibition of miR-208a Improves Cardiac Function and Survival During Heart Failure , 2011, Circulation.

[87]  K. Moore,et al.  Inhibition of miR-33a/b in non-human primates raises plasma HDL and reduces VLDL triglycerides , 2011, Nature.

[88]  Patrick Callier,et al.  Germline deletion of the miR-1792 cluster causes growth and skeletal defects in humans , 2011 .

[89]  R. Hartmann,et al.  MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. , 2011, Cancer research.

[90]  M. Zavolan,et al.  MicroRNAs 103 and 107 regulate insulin sensitivity , 2011, Nature.

[91]  B. Davis-Dusenbery,et al.  Down-regulation of Krüppel-like Factor-4 (KLF4) by MicroRNA-143/145 Is Critical for Modulation of Vascular Smooth Muscle Cell Phenotype by Transforming Growth Factor-β and Bone Morphogenetic Protein 4* , 2011, The Journal of Biological Chemistry.

[92]  A. Sood,et al.  MicroRNA therapeutics: principles, expectations, and challenges , 2011, Chinese journal of cancer.

[93]  F. Slack,et al.  Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[94]  Joshua T. Mendell,et al.  Restitution of Tumor Suppressor MicroRNAs Using a Systemic Nanovector Inhibits Pancreatic Cancer Growth in Mice , 2011, Molecular Cancer Therapeutics.

[95]  K. Moore,et al.  miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling , 2011, Proceedings of the National Academy of Sciences.

[96]  M. F. Shannon,et al.  An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition , 2011, Molecular biology of the cell.

[97]  Ming Yi,et al.  Human glioma growth is controlled by microRNA-10b. , 2011, Cancer research.

[98]  A. Książek,et al.  Major regulators of microRNAs biogenesis Dicer and Drosha are down-regulated in endometrial cancer , 2011, Tumor Biology.

[99]  Subrata Chakrabarti,et al.  MicroRNA-200b Regulates Vascular Endothelial Growth Factor–Mediated Alterations in Diabetic Retinopathy , 2011, Diabetes.

[100]  C. Croce,et al.  Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer , 2011, Proceedings of the National Academy of Sciences.

[101]  P Barbry,et al.  miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity , 2011, Cell Death and Differentiation.

[102]  Xiongbin Lu,et al.  The ATM kinase induces microRNA biogenesis in the DNA damage response. , 2011, Molecular cell.

[103]  J. Long,et al.  MicroRNA-29c Is a Signature MicroRNA under High Glucose Conditions That Targets Sprouty Homolog 1, and Its in Vivo Knockdown Prevents Progression of Diabetic Nephropathy* , 2011, The Journal of Biological Chemistry.

[104]  K. Kelnar,et al.  The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. , 2011, Nature medicine.

[105]  Milind B. Suraokar,et al.  TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs , 2010, Nature.

[106]  Hiroyuki Yamamoto,et al.  A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. , 2010, Cancer cell.

[107]  E. Olson,et al.  Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. , 2010, Cancer cell.

[108]  F. Slack,et al.  OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma , 2010, Nature.

[109]  Kevin Struhl,et al.  STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. , 2010, Molecular cell.

[110]  K. Kelnar,et al.  Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. , 2010, Cancer research.

[111]  F. Ferrari,et al.  A MicroRNA Targeting Dicer for Metastasis Control , 2010, Cell.

[112]  K. Moore,et al.  MiR-33 Contributes to the Regulation of Cholesterol Homeostasis , 2010, Science.

[113]  Oliver Distler,et al.  MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. , 2010, Arthritis and rheumatism.

[114]  Chunxiang Zhang,et al.  MicroRNA-21 in Cardiovascular Disease , 2010, Journal of cardiovascular translational research.

[115]  G. Goodall,et al.  E-Cadherin Expression Is Regulated by miR-192/215 by a Mechanism That Is Independent of the Profibrotic Effects of Transforming Growth Factor-β , 2010, Diabetes.

[116]  Mark E. Davis,et al.  Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles , 2010, Nature.

[117]  Robert A. Weinberg,et al.  Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model , 2010, Nature Biotechnology.

[118]  Andrea Califano,et al.  The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. , 2010, Cancer cell.

[119]  A. Sood,et al.  Nanomedicine based approaches for the delivery of siRNA in cancer , 2010, Journal of internal medicine.

[120]  S. Lowe,et al.  miR-221 overexpression contributes to liver tumorigenesis , 2009, Proceedings of the National Academy of Sciences.

[121]  Hansjuerg Alder,et al.  miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. , 2009, Cancer cell.

[122]  Kevin Struhl,et al.  An Epigenetic Switch Involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 Links Inflammation to Cell Transformation , 2009, Cell.

[123]  Stephanie Roessler,et al.  MicroRNA expression, survival, and response to interferon in liver cancer. , 2009, The New England journal of medicine.

[124]  John McAnally,et al.  MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. , 2009, Genes & development.

[125]  Johanna Schneider,et al.  Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. , 2009, The Journal of clinical investigation.

[126]  Gretchen M. Williams,et al.  DICER1 Mutations in Familial Pleuropulmonary Blastoma , 2009, Science.

[127]  P. Tam Faculty Opinions recommendation of miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. , 2009 .

[128]  Kathryn A. O’Donnell,et al.  Therapeutic microRNA Delivery Suppresses Tumorigenesis in a Murine Liver Cancer Model , 2009, Cell.

[129]  I. Faraoni,et al.  miR-155 gene: a typical multifunctional microRNA. , 2009, Biochimica et biophysica acta.

[130]  Ryan M. O’Connell,et al.  Inositol phosphatase SHIP1 is a primary target of miR-155 , 2009, Proceedings of the National Academy of Sciences.

[131]  You-yi Zhang,et al.  Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. , 2009, Biochemical and biophysical research communications.

[132]  V. Kim,et al.  Regulation of microRNA biogenesis , 2014, Nature Reviews Molecular Cell Biology.

[133]  T. Golub,et al.  MicroRNA-1 Negatively Regulates Expression of the Hypertrophy-Associated Calmodulin and Mef2a Genes , 2009, Molecular and Cellular Biology.

[134]  Mircea Ivan,et al.  MicroRNA regulation of DNA repair gene expression in hypoxic stress. , 2009, Cancer research.

[135]  C. Croce,et al.  miR-155: On the Crosstalk Between Inflammation and Cancer , 2009, International reviews of immunology.

[136]  Jan-Fang Cheng,et al.  Dicer, Drosha, and outcomes in patients with ovarian cancer. , 2008, The New England journal of medicine.

[137]  W. Rottbauer,et al.  MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts , 2008, Nature.

[138]  Masato Nagino,et al.  let-7 regulates Dicer expression and constitutes a negative feedback loop. , 2008, Carcinogenesis.

[139]  Qiong Shao,et al.  MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. , 2008, RNA.

[140]  Anna M. Krichevsky,et al.  miR-21: a small multi-faceted RNA , 2008, Journal of cellular and molecular medicine.

[141]  D. Engelman,et al.  Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane , 2008, Proceedings of the National Academy of Sciences.

[142]  F. Slack,et al.  The let-7 family of microRNAs. , 2008, Trends in cell biology.

[143]  H. Brunner,et al.  Genotype–phenotype correlations in MYCN‐related Feingold syndrome , 2008, Human mutation.

[144]  J. M. Thomson,et al.  Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. , 2008, RNA.

[145]  W. Saltzman,et al.  High loading efficiency and tunable release of plasmid DNA encapsulated in submicron particles fabricated from PLGA conjugated with poly-L-lysine. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[146]  Olga Kovalchuk,et al.  Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin , 2008, Molecular Cancer Therapeutics.

[147]  Fabio Martelli,et al.  MicroRNA-210 Modulates Endothelial Cell Response to Hypoxia and Inhibits the Receptor Tyrosine Kinase Ligand Ephrin-A3* , 2008, Journal of Biological Chemistry.

[148]  M. Korpal,et al.  The miR-200 Family Inhibits Epithelial-Mesenchymal Transition and Cancer Cell Migration by Direct Targeting of E-cadherin Transcriptional Repressors ZEB1 and ZEB2* , 2008, Journal of Biological Chemistry.

[149]  T. Brabletz,et al.  A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells , 2008, EMBO reports.

[150]  Shuji Fujita,et al.  miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. , 2008, Journal of molecular biology.

[151]  G. Goodall,et al.  The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 , 2008, Nature Cell Biology.

[152]  S. Kauppinen,et al.  LNA-mediated microRNA silencing in non-human primates , 2008, Nature.

[153]  H. Allgayer,et al.  MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer , 2008, Oncogene.

[154]  C. Croce,et al.  MiR-15a and miR-16-1 cluster functions in human leukemia , 2008, Proceedings of the National Academy of Sciences.

[155]  Sun-Mi Park,et al.  The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. , 2008, Genes & development.

[156]  N. Rajewsky,et al.  Dicer Ablation Affects Antibody Diversity and Cell Survival in the B Lymphocyte Lineage , 2008, Cell.

[157]  A. Krogh,et al.  Programmed Cell Death 4 (PDCD4) Is an Important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells* , 2008, Journal of Biological Chemistry.

[158]  A. Silahtaroglu,et al.  Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver , 2007, Nucleic acids research.

[159]  J. Lieberman,et al.  let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells , 2007, Cell.

[160]  S. Akhtar,et al.  Nonviral delivery of synthetic siRNAs in vivo. , 2007, The Journal of clinical investigation.

[161]  Ladan Fazli,et al.  Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development , 2007, Proceedings of the National Academy of Sciences.

[162]  F. Slack,et al.  The let-7 microRNA represses cell proliferation pathways in human cells. , 2007, Cancer research.

[163]  Reuven Agami,et al.  Regulation of the p27Kip1 tumor suppressor by miR‐221 and miR‐222 promotes cancer cell proliferation , 2007 .

[164]  V. Tarasov,et al.  Differential Regulation of microRNAs by p53 Revealed by Massively Parallel Sequencing: miR-34a is a p53 Target That Induces Apoptosis and G1-arrest , 2007, Cell cycle.

[165]  Michael A. Beer,et al.  Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. , 2007, Molecular cell.

[166]  Moshe Oren,et al.  Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. , 2007, Molecular cell.

[167]  Bruce Stillman,et al.  Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. , 2007, Cancer cell.

[168]  C. Croce,et al.  MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. , 2007, JAMA.

[169]  P. Vaupel,et al.  Hypoxia in cancer: significance and impact on clinical outcome , 2007, Cancer and Metastasis Reviews.

[170]  H. Sültmann,et al.  The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. , 2007, Cancer research.

[171]  George A. Calin,et al.  A MicroRNA Signature of Hypoxia , 2006, Molecular and Cellular Biology.

[172]  Soo Hyun Lee,et al.  PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[173]  E. Furth,et al.  Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster , 2006, Nature Genetics.

[174]  D. Engelman,et al.  Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[175]  Mark Graham,et al.  miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. , 2006, Cell metabolism.

[176]  R. Duncan,et al.  Dendrimer biocompatibility and toxicity. , 2005, Advanced drug delivery reviews.

[177]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[178]  P. Sarnow,et al.  Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA , 2005, Science.

[179]  Anil K Sood,et al.  Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. , 2005, Cancer research.

[180]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[181]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[182]  Shuta Tomida,et al.  Reduced expression of Dicer associated with poor prognosis in lung cancer patients , 2005, Cancer science.

[183]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[184]  E. Lesnik,et al.  Pharmacokinetic properties of 2'-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. , 2001, The Journal of pharmacology and experimental therapeutics.

[185]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[186]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[187]  Sue Hwang,et al.  A New Class of Polymers for the Delivery of Macromolecular Therapeutics , 1999, Nature Biotechnology.

[188]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[189]  F Leonard,et al.  Biodegradable poly(lactic acid) polymers. , 1971, Journal of biomedical materials research.

[190]  H. Döhner,et al.  Defective DROSHA processing contributes to downregulation of MiR-15/-16 in chronic lymphocytic leukemia , 2014, Leukemia.

[191]  Xiaoling Li,et al.  The microRNA-processing enzymes: Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma , 2011, Journal of Cancer Research and Clinical Oncology.

[192]  Robin L. Jones,et al.  Down-regulation of the miRNA master regulators Drosha and Dicer is associated with specific subgroups of breast cancer. , 2011, European journal of cancer.

[193]  Ryan E. Temel,et al.  Inhibition of miR-33 a / b in non-human primates raises plasma HDL and lowers VLDL triglycerides , 2011 .

[194]  R. Weinberg,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2008, Nature.

[195]  I. M. Neiman,et al.  [Inflammation and cancer]. , 1974, Patologicheskaia fiziologiia i eksperimental'naia terapiia.