MANA: A Monolithic Adiabatic iNtegration Architecture Microprocessor Using 1.4-zJ/op Unshunted Superconductor Josephson Junction Devices

We conducted the first successful demonstration of an adiabatic microprocessor based on unshunted Josephson junction (JJ) devices manufactured using a Nb/AlOx/Nb superconductor IC fabrication process. It is a hybrid of RISC and dataflow architectures operating on 4-b data words. We demonstrate register file R/W access, ALU execution, hardware stalling, and program branching performed at 100 kHz under the cryogenic temperature of 4.2 K. We also successfully demonstrated a high-speed breakout chip of the microprocessor execution units up to 2.5 GHz. We use a logic primitive called the adiabatic quantum-flux-parametron (AQFP), which has a switching energy of 1.4 zJ per JJ when driven by a four-phase 5-GHz sinusoidal ac-clock at 4.2 K. These demonstrations show that AQFP logic is capable of both processing and memory operations and that we have a path toward practical adiabatic computing operating at high-clock rates while dissipating very little energy.

[1]  O A Mukhanov,et al.  Energy-Efficient Single Flux Quantum Technology , 2011, IEEE Transactions on Applied Superconductivity.

[2]  Giovanni De Micheli,et al.  Majority-Inverter Graph: A New Paradigm for Logic Optimization , 2016, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[3]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[4]  Naoki Takeuchi,et al.  Adiabatic quantum-flux-parametron cell library adopting minimalist design , 2015 .

[5]  Ian Watson,et al.  The Manchester prototype dataflow computer , 1985, CACM.

[6]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[7]  Naoki Takeuchi,et al.  An adiabatic superconductor 8-bit adder with 24kBT energy dissipation per junction , 2019, Applied Physics Letters.

[8]  Soo-Ik Chae,et al.  A 16-bit carry-lookahead adder using reversible energy recovery logic for ultra-low-energy systems , 1999 .

[9]  Anders S. G. Andrae,et al.  On Global Electricity Usage of Communication Technology: Trends to 2030 , 2015 .

[10]  Massoud Pedram,et al.  ColdFlux Superconducting EDA and TCAD Tools Project: Overview and Progress , 2019, IEEE Transactions on Applied Superconductivity.

[11]  Naoki Takeuchi,et al.  Majority-Logic-Optimized Parallel Prefix Carry Look-Ahead Adder Families Using Adiabatic Quantum-Flux-Parametron Logic , 2017, IEEE Transactions on Applied Superconductivity.

[12]  Naoki Takeuchi,et al.  Development and Demonstration of Routing and Placement EDA Tools for Large-Scale Adiabatic Quantum-Flux-Parametron Circuits , 2017, IEEE Transactions on Applied Superconductivity.

[13]  Naoki Takeuchi,et al.  A semi-custom design methodology and environment for implementing superconductor adiabatic quantum-flux-parametron microprocessors , 2020, Superconductor Science and Technology.

[14]  Saurabh Dighe,et al.  An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[15]  Alexei O. Orlov,et al.  Design of a 16-Bit Adiabatic Microprocessor , 2019, 2019 IEEE International Conference on Rebooting Computing (ICRC).

[16]  Naoki Takeuchi,et al.  Low-latency power-dividing clocking scheme for adiabatic quantum-flux-parametron logic , 2020 .

[17]  D. Gupta,et al.  A compact AQFP logic cell design using an 8-metal layer superconductor process , 2020, Superconductor Science and Technology.

[18]  Nobuyuki Yoshikawa,et al.  Fabrication of Adiabatic Quantum-Flux-Parametron Integrated Circuits Using an Automatic Placement Tool Based on Genetic Algorithms , 2019, IEEE Transactions on Applied Superconductivity.

[19]  Nobuyuki Yoshikawa,et al.  Reduction of power consumption of RSFQ circuits by inductance-load biasing , 1999 .

[20]  Naoki Takeuchi,et al.  Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm−2 niobium fabrication process , 2017 .

[21]  Naoki Takeuchi,et al.  Majority Gate-Based Feedback Latches for Adiabatic Quantum Flux Parametron Logic , 2016, IEICE Trans. Electron..

[22]  Aaron Stillmaker,et al.  Scaling equations for the accurate prediction of CMOS device performance from 180 nm to 7 nm , 2017, Integr..

[23]  S. Sarwana,et al.  Zero Static Power Dissipation Biasing of RSFQ Circuits , 2011, IEEE Transactions on Applied Superconductivity.

[24]  장훈,et al.  [서평]「Computer Organization and Design, The Hardware/Software Interface」 , 1997 .

[25]  Naoki Takeuchi,et al.  Low-latency adiabatic superconductor logic using delay-line clocking , 2019, Applied Physics Letters.

[26]  Coenrad Johann Fourie,et al.  JoSIM—Superconductor SPICE Simulator , 2019, IEEE Transactions on Applied Superconductivity.

[27]  D. S. Holmes,et al.  Energy-Efficient Superconducting Computing—Power Budgets and Requirements , 2013, IEEE Transactions on Applied Superconductivity.

[28]  N. Takeuchi,et al.  Experimental Demonstration of Quantum-Flux-Latch-Based Circuits , 2015, IEEE Transactions on Applied Superconductivity.

[29]  Nobuyuki Yoshikawa,et al.  Superconducting Digital Electronics for Controlling Quantum Computing Systems , 2019, IEICE Trans. Electron..

[30]  Naoki Takeuchi,et al.  Design and Implementation of a 16-Word by 1-Bit Register File Using Adiabatic Quantum Flux Parametron Logic , 2017, IEEE Transactions on Applied Superconductivity.

[31]  Masato Ito,et al.  18-GHz, 4.0-aJ/bit Operation of Ultra-Low-Energy Rapid Single-Flux-Quantum Shift Registers , 2012 .

[32]  Soo-Ik Chae,et al.  Implementation of a simple 8-bit microprocessor with reversible energy recovery logic , 2005, CF '05.

[33]  N. Takeuchi,et al.  Measurement of low bit-error-rates of adiabatic quantum-flux-parametron logic using a superconductor voltage driver , 2017 .

[34]  N. Jones How to stop data centres from gobbling up the world’s electricity , 2018, Nature.

[35]  K. Likharev,et al.  Rapid single flux quantum T-flip flop operating up to 770 GHz , 1999, IEEE Transactions on Applied Superconductivity.

[36]  Nobuyuki Yoshikawa,et al.  AQFPTX: Adiabatic Quantum-Flux-Parametron Timing eXtraction Tool , 2019, 2019 IEEE International Superconductive Electronics Conference (ISEC).

[37]  M Dorojevets,et al.  Data-Flow Microarchitecture for Wide Datapath RSFQ Processors: Design Study , 2011, IEEE Transactions on Applied Superconductivity.

[38]  Z. Popovic,et al.  Broadband Lumped-Element Integrated $N$-Way Power Dividers for Voltage Standards , 2009, IEEE Transactions on Microwave Theory and Techniques.

[39]  Naoki Takeuchi,et al.  HDL-Based Modeling Approach for Digital Simulation of Adiabatic Quantum Flux Parametron Logic , 2016, IEEE Transactions on Applied Superconductivity.

[40]  M. Gouker,et al.  Advanced Fabrication Processes for Superconducting Very Large-Scale Integrated Circuits , 2015, IEEE Transactions on Applied Superconductivity.

[41]  Y.. Polyakov,et al.  Flux Trapping in Superconducting Circuits , 2007, IEEE Transactions on Applied Superconductivity.

[42]  Coenrad J. Fourie,et al.  Three-dimensional multi-terminal superconductive integrated circuit inductance extraction , 2011 .

[43]  E. S. Fang,et al.  A Josephson integrated circuit simulator (JSIM) for superconductive electronics application , 1989 .

[44]  Y. Yamanashi,et al.  Margin and Energy Dissipation of Adiabatic Quantum-Flux-Parametron Logic at Finite Temperature , 2013, IEEE Transactions on Applied Superconductivity.

[45]  Naoki Takeuchi,et al.  Synthesis Flow for Cell-Based Adiabatic Quantum-Flux-Parametron Structural Circuit Generation With HDL Back-End Verification , 2017, IEEE Transactions on Applied Superconductivity.

[46]  M. M. Khapaev,et al.  How Moats Protect Superconductor Films From Flux Trapping , 2016, IEEE Transactions on Applied Superconductivity.

[47]  N. Takeuchi,et al.  Directly coupled adiabatic superconductor logic , 2020, Superconductor Science and Technology.

[48]  Naoki Takeuchi,et al.  Energy efficiency of adiabatic superconductor logic , 2014 .

[49]  E. J. Wilkinson An N-Way Hybrid Power Divider , 1960 .

[50]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.