Gold nanoparticles in model biological membranes: A computational perspective.

[1]  Shinhyun Choi,et al.  Solvent-exposed lipid tail protrusions depend on lipid membrane composition and curvature. , 2016, Biochimica et biophysica acta.

[2]  S. Hou,et al.  The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 nm Gold Nanoparticles. , 2015, ACS nano.

[3]  G. Rossi,et al.  Monolayer-Protected Anionic Au Nanoparticles Walk into Lipid Membranes Step by Step , 2015 .

[4]  Kai Yang,et al.  Cooperative Transmembrane Penetration of Nanoparticles , 2015, Scientific Reports.

[5]  Jacob J. Schmidt,et al.  Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays. , 2015, Nanoscale.

[6]  A. Alexander-Katz,et al.  Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations. , 2015, Soft matter.

[7]  D. Weaver,et al.  Impact of protecting ligands on surface structure and antibacterial activity of silver nanoparticles. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[8]  Hong-ming Ding,et al.  Theoretical and computational investigations of nanoparticle-biomembrane interactions in cellular delivery. , 2015, Small.

[9]  Panagiotis Angelikopoulos,et al.  Membrane Partitioning of Anionic, Ligand-Coated Nanoparticles Is Accompanied by Ligand Snorkeling, Local Disordering, and Cholesterol Depletion , 2014, PLoS Comput. Biol..

[10]  I. Vattulainen,et al.  Atomistic simulations of anionic Au144(SR)60 nanoparticles interacting with asymmetric model lipid membranes. , 2014, Biochimica et biophysica acta.

[11]  A. Alexander-Katz,et al.  Membrane-embedded nanoparticles induce lipid rearrangements similar to those exhibited by biological membrane proteins. , 2014, The journal of physical chemistry. B.

[12]  F. Stellacci,et al.  Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes , 2014, Nature Communications.

[13]  G. Gompper,et al.  Membrane-Wrapping Contributions to Malaria Parasite Invasion of the Human Erythrocyte , 2014, Biophysical journal.

[14]  Bo Yan,et al.  Fabrication of Corona-Free Nanoparticles with Tunable Hydrophobicity , 2014, ACS nano.

[15]  H. Häkkinen,et al.  Solvation chemistry of water-soluble thiol-protected gold nanocluster Au₁₀₂ from DOSY NMR spectroscopy and DFT calculations. , 2014, Nanoscale.

[16]  Kevin Braeckmans,et al.  Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. , 2014, ACS nano.

[17]  F. Stellacci,et al.  A general mechanism for intracellular toxicity of metal-containing nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01234h Click here for additional data file. , 2014, Nanoscale.

[18]  I. Vattulainen,et al.  Cationic Au Nanoparticle Binding with Plasma Membrane-like Lipid Bilayers: Potential Mechanism for Spontaneous Permeation to Cells Revealed by Atomistic Simulations , 2014 .

[19]  A. Alexander-Katz,et al.  Fusion of ligand-coated nanoparticles with lipid bilayers: effect of ligand flexibility. , 2014, The journal of physical chemistry. A.

[20]  A. Alexander-Katz,et al.  Free energy change for insertion of charged, monolayer-protected nanoparticles into lipid bilayers. , 2014, Soft matter.

[21]  G. Gompper,et al.  Shape and orientation matter for the cellular uptake of nonspherical particles. , 2014, Nano letters.

[22]  Pengyu Y. Ren,et al.  Classical electrostatics for biomolecular simulations. , 2014, Chemical reviews.

[23]  A. Alexander-Katz,et al.  Cell membranes open "doors" for cationic nanoparticles/biomolecules: insights into uptake kinetics. , 2013, ACS Nano.

[24]  J. Enkovaara,et al.  Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters. , 2013, ACS nano.

[25]  J. Killian,et al.  Biophysical Investigation of the Membrane-Disrupting Mechanism of the Antimicrobial and Amyloid-Like Peptide Dermaseptin S9 , 2013, PloS one.

[26]  A. Alexander-Katz,et al.  Structure of Mixed-Monolayer-Protected Nanoparticles in Aqueous Salt Solution from Atomistic Molecular Dynamics Simulations , 2013 .

[27]  R. Worden,et al.  Polystyrene nanoparticle exposure induces ion-selective pores in lipid bilayers. , 2013, Biochimica et biophysica acta.

[28]  Prabhani U. Atukorale,et al.  Effect of particle diameter and surface composition on the spontaneous fusion of monolayer-protected gold nanoparticles with lipid bilayers. , 2013, Nano letters.

[29]  D. Tieleman,et al.  Perspective on the Martini model. , 2013, Chemical Society reviews.

[30]  A. Alexander-Katz,et al.  Ligand-mediated short-range attraction drives aggregation of charged monolayer-protected gold nanoparticles. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[31]  M. Maccarini,et al.  Effect of functionalized gold nanoparticles on floating lipid bilayers. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[32]  P. Angelikopoulos,et al.  Homogeneous Hydrophobic-Hydrophilic Surface Patterns Enhance Permeation of Nanoparticles through Lipid Membranes. , 2013, The journal of physical chemistry letters.

[33]  D. Frenkel,et al.  Intracellular release of endocytosed nanoparticles upon a change of ligand-receptor interaction. , 2012, ACS nano.

[34]  Erik C. Dreaden,et al.  The Golden Age: Gold Nanoparticles for Biomedicine , 2012 .

[35]  H. Häkkinen,et al.  The gold-sulfur interface at the nanoscale. , 2012, Nature chemistry.

[36]  Huajian Gao,et al.  Surface-structure-regulated penetration of nanoparticles across a cell membrane. , 2012, Nanoscale.

[37]  I. Vattulainen,et al.  Atomistic Simulations of Functional Au144(SR)60 Gold Nanoparticles in Aqueous Environment , 2012 .

[38]  N. Khlebtsov,et al.  Gold nanoparticles in biomedical applications: recent advances and perspectives. , 2012, Chemical Society reviews.

[39]  V. Rotello,et al.  Monolayer coated gold nanoparticles for delivery applications. , 2012, Advanced drug delivery reviews.

[40]  Yu-qiang Ma,et al.  Designing nanoparticle translocation through membranes by computer simulations. , 2012, ACS nano.

[41]  A. Šarić,et al.  Fluid membranes can drive linear aggregation of adsorbed spherical nanoparticles. , 2011, Physical review letters.

[42]  M. Callaghan,et al.  The influence of ligand organization on the rate of uptake of gold nanoparticles by colorectal cancer cells. , 2011, Biomaterials.

[43]  A. Alexander-Katz,et al.  Penetration of lipid bilayers by nanoparticles with environmentally-responsive surfaces: simulations and theory , 2011 .

[44]  Daan Frenkel,et al.  Receptor-mediated endocytosis of nanoparticles of various shapes. , 2011, Nano letters.

[45]  Vincent M Rotello,et al.  Nano meets biology: structure and function at the nanoparticle interface. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[46]  Daniel L. Parton,et al.  Aggregation of model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class. , 2011, Biophysical journal.

[47]  Mostafa A. El-Sayed,et al.  Beating cancer in multiple ways using nanogold. , 2011, Chemical Society reviews.

[48]  T. Roose,et al.  Electrophysiological characterization of membrane disruption by nanoparticles. , 2011, ACS nano.

[49]  Jie Zheng,et al.  Luminescent gold nanoparticles with efficient renal clearance. , 2011, Angewandte Chemie.

[50]  Lev Dykman,et al.  Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. , 2011, Chemical Society reviews.

[51]  Nastassja A. Lewinski,et al.  A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. , 2011, Small.

[52]  S. Glotzer,et al.  Atomistic Simulation Study of Striped Phase Separation in Mixed-Ligand Self-Assembled Monolayer Coated Nanoparticles , 2010 .

[53]  Kai Yang,et al.  Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. , 2010, Nature nanotechnology.

[54]  Vincent M Rotello,et al.  Effect of nanoparticle surface charge at the plasma membrane and beyond. , 2010, Nano letters.

[55]  Durba Sengupta,et al.  Polarizable Water Model for the Coarse-Grained MARTINI Force Field , 2010, PLoS Comput. Biol..

[56]  Helinor J Johnston,et al.  A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity , 2010, Critical reviews in toxicology.

[57]  Miqin Zhang,et al.  Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. , 2010, Advanced drug delivery reviews.

[58]  Hugues Talbot,et al.  Cryo-electron tomography of nanoparticle transmigration into liposome. , 2009, Journal of structural biology.

[59]  A. Dass Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. , 2009, Journal of the American Chemical Society.

[60]  M. Hande,et al.  Cytotoxicity and genotoxicity of silver nanoparticles in human cells. , 2009, ACS nano.

[61]  R. Whetten,et al.  Structure and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au144(SR)60 , 2009 .

[62]  Liangfang Zhang,et al.  Nanoparticle-induced surface reconstruction of phospholipid membranes , 2008, Proceedings of the National Academy of Sciences.

[63]  Gernot Guigas,et al.  Cluster formation of transmembrane proteins due to hydrophobic mismatching. , 2008, Physical review letters.

[64]  Francesco Stellacci,et al.  Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. , 2008, Nature materials.

[65]  D. Tieleman,et al.  Computer simulation study of fullerene translocation through lipid membranes. , 2008, Nature nanotechnology.

[66]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[67]  G. Meer,et al.  Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.

[68]  Kristen N. Duthie,et al.  Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. , 2008, Nano letters.

[69]  Nastassja A. Lewinski,et al.  Cytotoxicity of nanoparticles. , 2008, Small.

[70]  S. Glotzer,et al.  Entropy-mediated patterning of surfactant-coated nanoparticles and surfaces. , 2007, Physical review letters.

[71]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[72]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[73]  K. Kremer,et al.  Aggregation and vesiculation of membrane proteins by curvature-mediated interactions , 2007, Nature.

[74]  Stephen M. Anthony,et al.  Cationic Nanoparticles Stabilize Zwitterionic Liposomes Better than Anionic Ones , 2007 .

[75]  Warren C W Chan,et al.  Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. , 2007, Nano letters.

[76]  J. Bacri,et al.  Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. , 2007, Journal of the American Chemical Society.

[77]  Steve Granick,et al.  How to stabilize phospholipid liposomes (using nanoparticles). , 2006, Nano letters.

[78]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[79]  J. Killian,et al.  Self-association of transmembrane alpha-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch. , 2005, The Journal of biological chemistry.

[80]  Huajian Gao,et al.  Mechanics of receptor-mediated endocytosis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Vincent M Rotello,et al.  Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. , 2004, Bioconjugate chemistry.

[82]  W. Gelbart,et al.  Adhesion and Wrapping in Colloid−Vesicle Complexes , 2002 .

[83]  R. Lipowsky,et al.  Vesicles in contact with nanoparticles and colloids , 1998 .

[84]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[85]  D. Allara,et al.  Nanometer-scale phase separation in mixed composition self-assembled monolayers , 1996 .

[86]  B. Roux The calculation of the potential of mean force using computer simulations , 1995 .

[87]  Herman J. C. Berendsen,et al.  Simulation of Water Transport through a Lipid Membrane , 1994 .

[88]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[89]  Ilpo Vattulainen,et al.  Modeling of Biologically Motivated Soft Matter Systems , 2010 .