View Selection in Semantic Web Databases

We consider the setting of a Semantic Web database, containing both explicit data encoded in RDF triples, and implicit data, implied by the RDF semantics. Based on a query workload, we address the problem of selecting a set of views to be materialized in the database, minimizing a combination of query processing, view storage, and view maintenance costs. Starting from an existing relational view selection method, we devise new algorithms for recommending view sets, and show that they scale significantly beyond the existing relational ones when adapted to the RDF context. To account for implicit triples in query answers, we propose a novel RDF query reformulation algorithm and an innovative way of incorporating it into view selection in order to avoid a combinatorial explosion in the complexity of the selection process. The interest of our techniques is demonstrated through a set of experiments.

[1]  Riccardo Rosati On the finite controllability of conjunctive query answering in databases under open-world assumption , 2011, J. Comput. Syst. Sci..

[2]  Ulf Leser,et al.  Selecting Materialized Views for RDF Data , 2010, ICWE Workshops.

[3]  M. Jarke,et al.  Fundamentals of Data Warehouses , 2003, Springer Berlin Heidelberg.

[4]  Raghu Ramakrishnan,et al.  Database Management Systems , 1976 .

[5]  Dave Reynolds,et al.  SPARQL basic graph pattern optimization using selectivity estimation , 2008, WWW.

[6]  Huajun Chen,et al.  The Semantic Web , 2011, Lecture Notes in Computer Science.

[7]  Amit P. Sheth,et al.  Graph Summaries for Subgraph Frequency Estimation , 2008, ESWC.

[8]  Feifei Li,et al.  Rewriting queries on SPARQL views , 2011, WWW.

[9]  Alon Y. Halevy,et al.  Answering queries using views: A survey , 2001, The VLDB Journal.

[10]  Gerhard Weikum,et al.  x-RDF-3X , 2010, Proc. VLDB Endow..

[11]  Diego Calvanese,et al.  Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.

[12]  Martin L. Kersten,et al.  Column-store support for RDF data management: not all swans are white , 2008, Proc. VLDB Endow..

[13]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[14]  Gerhard Weikum,et al.  Scalable join processing on very large RDF graphs , 2009, SIGMOD Conference.

[15]  Wolfgang Lehner,et al.  Efficient exploitation of similar subexpressions for query processing , 2007, SIGMOD '07.

[16]  Daniel J. Abadi,et al.  Scalable Semantic Web Data Management Using Vertical Partitioning , 2007, VLDB.

[17]  François Goasdoué,et al.  RDFViewS: a storage tuning wizard for RDF applications , 2010, CIKM '10.

[18]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[19]  Abraham Bernstein,et al.  Hexastore: sextuple indexing for semantic web data management , 2008, Proc. VLDB Endow..

[20]  V. S. Subrahmanian,et al.  GRIN: A Graph Based RDF Index , 2007, AAAI.

[21]  Timos K. Sellis,et al.  View selection for designing the global data warehouse , 2001, Data Knowl. Eng..

[22]  Gerhard Weikum,et al.  RDF-3X: a RISC-style engine for RDF , 2008, Proc. VLDB Endow..

[23]  François Goasdoué,et al.  SomeRDFSin the Semantic Web , 2007, J. Data Semant..

[24]  Luping Ding,et al.  Dynamic Materialized Views , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[25]  Guido Moerkotte,et al.  Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[26]  Ashok K. Chandra,et al.  Optimal implementation of conjunctive queries in relational data bases , 1977, STOC '77.

[27]  Panos Constantopoulos,et al.  Optimizing Query Shortcuts in RDF Databases , 2011, ESWC.

[28]  Rada Chirkova,et al.  A formal perspective on the view selection problem , 2002, The VLDB Journal.

[29]  GoasdouéFrançois,et al.  View selection in Semantic Web databases , 2011, VLDB 2011.