Extending Partial Representations of Proper and Unit Interval Graphs

The recently introduced problem of extending partial interval representations asks, for an interval graph with some intervals pre-drawn by the input, whether the partial representation can be extended to a representation of the entire graph. In this paper, we give a linear-time algorithm for extending proper interval representations and an almost quadratic-time algorithm for extending unit interval representations.

[1]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[2]  Pavel Klavík,et al.  Extending Partial Representations of Circle Graphs , 2013, Graph Drawing.

[3]  Yota Otachi,et al.  Extending Partial Representations of Interval Graphs , 2011, Algorithmica.

[4]  Pavel Klav ´ ik Extending Partial Representations of Interval Graphs , 2012 .

[5]  Marc Pirlot,et al.  Synthetic description of a semiorder , 1991, Discret. Appl. Math..

[6]  Stephan Olariu,et al.  The LBFS Structure and Recognition of Interval Graphs , 2009, SIAM J. Discret. Math..

[7]  Pavel Klavík,et al.  Minimal Obstructions for Partial Representations of Interval Graphs , 2014, ISAAC.

[8]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[9]  Samuel Fiorini,et al.  The Representation Polyhedron of a Semiorder , 2013, Order.

[10]  Jiří Fiala NP completeness of the edge precoloring extension problem on bipartite graphs , 2003 .

[11]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[12]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[13]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[14]  Yota Otachi,et al.  Bounded Representations of Interval and Proper Interval Graphs , 2013, ISAAC.

[15]  Maurizio Patrignani On Extending a Partial Straight-Line Drawing , 2005, Graph Drawing.

[16]  David S. Johnson,et al.  Complexity Results for Multiprocessor Scheduling under Resource Constraints , 1975, SIAM J. Comput..

[17]  Anna Lubiw,et al.  Simultaneous Interval Graphs , 2010, ISAAC.

[18]  Martin Fürer Faster integer multiplication , 2007, STOC '07.

[19]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[20]  Paul Dorbec,et al.  Contact Representations of Planar Graphs: Extending a Partial Representation is Hard , 2014, WG.

[21]  Yota Otachi,et al.  Extending Partial Representations of Subclasses of Chordal Graphs , 2012, ISAAC.

[22]  Dániel Marx,et al.  NP‐completeness of list coloring and precoloring extension on the edges of planar graphs , 2005, J. Graph Theory.

[23]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[24]  Xiaotie Deng,et al.  Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs , 1996, SIAM J. Comput..

[25]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[26]  Anna Lubiw,et al.  The Simultaneous Representation Problem for Chordal, Comparability and Permutation Graphs , 2009, WADS.

[27]  Pavel Klavík,et al.  Extending Partial Representations of Function Graphs and Permutation Graphs , 2012, ESA.

[28]  M. Pirlot Minimal representation of a semiorder , 1990 .

[29]  Jan Kratochvíl,et al.  Testing planarity of partially embedded graphs , 2010, SODA '10.

[30]  Jayme Luiz Szwarcfiter,et al.  On unit interval graphs with integer endpoints , 2015, Electron. Notes Discret. Math..

[31]  Yota Otachi,et al.  Extending Partial Representations of Proper and Unit Interval Graphs , 2016, Algorithmica.

[32]  Ignaz Rutter,et al.  Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems , 2011, SODA.

[33]  Yota Otachi,et al.  Linear-time Algorithm for Partial Representation Extension of Interval Graphs , 2013, ArXiv.

[34]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..