14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition.

[1]  Wenjun Guo,et al.  The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells , 2008, Cell.

[2]  Jun Yao,et al.  Regulation of in situ to invasive breast carcinoma transition. , 2008, Cancer cell.

[3]  G. Tortora,et al.  LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis , 2008, Molecular Cancer Therapeutics.

[4]  Dihua Yu,et al.  14-3-3 zeta down-regulates p53 in mammary epithelial cells and confers luminal filling. , 2008, Cancer research.

[5]  T. Gress,et al.  Collagen type I-induced Smad-interacting protein 1 expression downregulates E-cadherin in pancreatic cancer , 2007, Oncogene.

[6]  G. Tzivion,et al.  14-3-3 proteins as potential oncogenes. , 2006, Seminars in cancer biology.

[7]  Jiandong Chen,et al.  Regulation of MDMX nuclear import and degradation by Chk2 and 14‐3‐3 , 2006, The EMBO journal.

[8]  Sharon Nofech-Mozes,et al.  Prognostic and Predictive Molecular Markers in DCIS: A Review , 2005, Advances in anatomic pathology.

[9]  Jiri Zavadil,et al.  TGF-β and epithelial-to-mesenchymal transitions , 2005, Oncogene.

[10]  J. Nesland,et al.  Snail, Slug, and Smad‐interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma , 2005, Cancer.

[11]  B. Park,et al.  Duel nature of TGF-β signaling: tumor suppressor vs. tumor promoter , 2005 .

[12]  Jonathan M. Yingling,et al.  Development of TGF-β signalling inhibitors for cancer therapy , 2004, Nature Reviews Drug Discovery.

[13]  P. Pandolfi,et al.  Cytoplasmic PML function in TGF-β signalling , 2004, Nature.

[14]  F. Portillo,et al.  Transcriptional regulation of cadherins during development and carcinogenesis. , 2004, The International journal of developmental biology.

[15]  Michael B Yaffe,et al.  14-3-3 Proteins--a focus on cancer and human disease. , 2004, Journal of molecular and cellular cardiology.

[16]  M. Bissell,et al.  Homeostasis in the breast: it takes a village. , 2004, Cancer cell.

[17]  Kornelia Polyak,et al.  Ductal Carcinoma in Situ of the Breast , 2004, Strahlentherapie und Onkologie.

[18]  Joshua LaBaer,et al.  Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Mong-Hong Lee,et al.  14-3-3σ Positively Regulates p53 and Suppresses Tumor Growth , 2003, Molecular and Cellular Biology.

[20]  R. Cardiff,et al.  Gene expression profiling of neu-induced mammary tumors from transgenic mice reveals genetic and morphological similarities to ErbB2-expressing human breast cancers. , 2003, Cancer research.

[21]  Jayanta Debnath,et al.  Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. , 2003, Methods.

[22]  Carlos L. Arteaga,et al.  Targeting the TGFβ signaling network in human neoplasia , 2003 .

[23]  Jeffrey L. Wrana,et al.  Distinct endocytic pathways regulate TGF-β receptor signalling and turnover , 2003, Nature Cell Biology.

[24]  G. Giles,et al.  Biological markers that predict clinical recurrence in ductal carcinoma in situ of the breast. , 2003, European journal of cancer.

[25]  L. Nelles,et al.  Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. , 2003, American journal of human genetics.

[26]  Birgit Luber,et al.  Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. , 2002, The American journal of pathology.

[27]  G. Strathdee Epigenetic versus genetic alterations in the inactivation of E-cadherin. , 2002, Seminars in cancer biology.

[28]  L. Wakefield,et al.  Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. , 2002, The Journal of clinical investigation.

[29]  J. Feldner,et al.  Cancer cell motility--on the road from c-erbB-2 receptor steered signaling to actin reorganization. , 2002, Experimental cell research.

[30]  M. Bissell,et al.  ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini , 2001, Nature Cell Biology.

[31]  M. Fernö,et al.  Cell biological factors in ductal carcinoma in situ (DCIS) of the breast-relationship to ipsilateral local recurrence and histopathological characteristics. , 2001, European journal of cancer.

[32]  G. Berx,et al.  The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. , 2001, Molecular cell.

[33]  E. Pearce,et al.  Conserved role for 14‐3‐3ϵ downstream of type I TGFβ receptors , 2001 .

[34]  M. Hung,et al.  Overexpression of ErbB2 in cancer and ErbB2-targeting strategies , 2000, Oncogene.

[35]  I. Beavon The E-cadherin-catenin complex in tumour metastasis: structure, function and regulation. , 2000, European journal of cancer.

[36]  C. Larabell,et al.  Reversion of the Malignant Phenotype of Human Breast Cells in Three-Dimensional Culture and In Vivo by Integrin Blocking Antibodies , 1997, The Journal of cell biology.

[37]  V. Canzonieri,et al.  Immunohistochemical evaluation of multiple biological markers in ductal carcinoma in situ of the breast. , 1996, European journal of cancer.

[38]  L. Liotta,et al.  Tumor invasion and metastasis: an imbalance of positive and negative regulation. , 1991, Cancer research.

[39]  W Godolphin,et al.  Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. , 1989, Science.

[40]  M. Guarino Epithelial-mesenchymal transition and tumour invasion. , 2007, The international journal of biochemistry & cell biology.