Modeling and Control of a Nonuniform Vibrating String Under Spatiotemporally Varying Tension and Disturbance

In this paper, robust adaptive boundary control is developed for a class of flexible string systems under unknown spatiotemporally varying distributed disturbance and time-varying boundary disturbance. The vibrating string is nonuniform since the spatiotemporally varying tension applied to the system. The nonuniform vibrating string system is represented by a nonlinear nonhomogeneous partial differential equation (PDE) and two ordinary differential equations (ODEs). Model-based control is first proposed at the right boundary of the string to suppress the vibration of the flexible nonuniform string system. To compensate for the system parametric uncertainties, robust adaptive boundary control is developed. With the proposed control, the uniformly ultimate boundness of the closed-loop system is demonstrated via Lyapunov's direct method. The state of the nonuniform string system is proven to converge to a small neighborhood of zero by appropriately choosing the design parameters. Simulations are provided to illustrate the effectiveness of the proposed control.

[1]  Shuzhi Sam Ge,et al.  Energy-based robust controller design for multi-link flexible robots , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[2]  Marcio de Queiroz,et al.  BOUNDARY CONTROL OF VIBRATION AND NOISE IN DISTRIBUTED PARAMETER SYSTEMS: AN OVERVIEW , 2002 .

[3]  Christopher D. Rahn,et al.  Mechatronic control of distributed noise and vibration , 2001 .

[4]  Miroslav Krstic,et al.  Adaptive control of an anti-stable wave PDE , 2009, 2009 American Control Conference.

[5]  André Preumont,et al.  Vibration Control of Active Structures: An Introduction , 2018 .

[6]  S.S. Ge,et al.  Tracking and Vibration Control of Flexible Robots Using Shape Memory Alloys , 2006, IEEE/ASME Transactions on Mechatronics.

[7]  Shuzhi Sam Ge,et al.  Boundary Control of a Coupled Nonlinear Flexible Marine Riser , 2010, IEEE Transactions on Control Systems Technology.

[8]  Darren M. Dawson,et al.  Asymptotically Stabilizing Angle Feedback for a Flexible Cable Gantry Crane , 1999 .

[9]  Miroslav Krstic,et al.  Motion Planning and Tracking for Tip Displacement and Deflection Angle for Flexible Beams , 2009 .

[10]  Mikhail I. Belishev,et al.  Recent progress in the boundary control method , 2007 .

[11]  Vicente Feliu,et al.  Integral Resonant Control for Vibration Damping and Precise Tip-Positioning of a Single-Link Flexible Manipulator , 2011, IEEE/ASME Transactions on Mechatronics.

[12]  Andreas Kugi,et al.  Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness , 2009, Autom..

[13]  M. Balas,et al.  Feedback control of flexible systems , 1978 .

[14]  G. Zhu,et al.  Asymptotically Stable End-Point Regulation of a Flexible SCARA/Cartesian Robot , 1998 .

[15]  Shuzhi Sam Ge,et al.  Active control of flexible marine risers , 2009 .

[16]  Shuzhi Sam Ge,et al.  Improving regulation of a single-link flexible manipulator with strain feedback , 1998, IEEE Trans. Robotics Autom..

[17]  Haym Benaroya,et al.  Mechanical Vibration: Analysis, Uncertainties, and Control , 1997 .

[18]  Shuzhi Sam Ge,et al.  Boundary control of a flexible marine riser with vessel dynamics , 2010, Proceedings of the 2010 American Control Conference.

[19]  Miroslav Krstic,et al.  Boundary Stabilization of a 1-D Wave Equation with In-Domain Antidamping , 2010, SIAM J. Control. Optim..

[20]  Jun-feng Li,et al.  Stabilization analysis of a generalized nonlinear axially moving string by boundary velocity feedback , 2008, Autom..

[21]  Kyung-Jinn Yang,et al.  Boundary control of a translating tensioned beam with varying speed , 2005, IEEE/ASME Transactions on Mechatronics.

[22]  Shuzhi Sam Ge,et al.  Variable structure control of a distributed‐parameter flexible beam , 2001 .

[23]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[24]  M. Krstić,et al.  Boundary Control of PDEs , 2008 .

[25]  K. Hong,et al.  Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension , 2004 .

[26]  Kok-Meng Lee,et al.  Computational models for predicting the deflected shape of a non-uniform, flexible finger , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[27]  M. Krstić Boundary Control of PDEs: A Course on Backstepping Designs , 2008 .

[28]  Zhihua Qu,et al.  Robust and adaptive boundary control of a stretched string on a moving transporter , 2001, IEEE Trans. Autom. Control..

[29]  Darren M. Dawson,et al.  BOUNDARY CONTROL FOR A GENERAL CLASS OF NON-LINEAR STRING–ACTUATOR SYSTEMS , 2000 .

[30]  Rong-Fong Fung,et al.  Boundary Control of an Axially Moving String Via Lyapunov Method , 1999 .

[31]  Fumitoshi Matsuno,et al.  Robust boundary control of an axially moving string by using a PR transfer function , 2005, IEEE Transactions on Automatic Control.

[32]  K. Hong,et al.  Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control , 2010 .

[33]  Shuzhi Sam Ge,et al.  Model-free regulation of multi-link smart materials robots , 2001 .

[34]  Darren M. Dawson,et al.  Lyapunov-Based Control of Mechanical Systems , 2000 .

[35]  L. Meirovitch,et al.  On the problem of observation spillover in self-adjoint distributed-parameter systems , 1983 .

[36]  Vicente Feliu,et al.  Concurrent Design of Multimode Input Shapers and Link Dynamics for Flexible Manipulators , 2010, IEEE/ASME Transactions on Mechatronics.

[37]  S.O.R. Moheimani,et al.  Precise Tip Positioning of a Flexible Manipulator Using Resonant Control , 2008 .

[38]  Zhihua Qu Robust and adaptive boundary control of a stretched string , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[39]  Keng Peng Tee,et al.  Control of fully actuated ocean surface vessels using a class of feedforward approximators , 2006, IEEE Transactions on Control Systems Technology.

[40]  Miroslav Krstic,et al.  Output-feedback stabilization of an unstable wave equation , 2008, Autom..

[41]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[42]  Shuzhi Sam Ge,et al.  A Quasi-Tracking Approach for Finite-Time Control of a Mass-Beam System , 1998, Autom..