miROrtho: computational survey of microRNA genes

MicroRNAs (miRNAs) are short, non-protein coding RNAs that direct the widespread phenomenon of post-transcriptional regulation of metazoan genes. The mature ∼22-nt long RNA molecules are processed from genome-encoded stem-loop structured precursor genes. Hundreds of such genes have been experimentally validated in vertebrate genomes, yet their discovery remains challenging, and substantially higher numbers have been estimated. The miROrtho database (http://cegg.unige.ch/mirortho) presents the results of a comprehensive computational survey of miRNA gene candidates across the majority of sequenced metazoan genomes. We designed and applied a three-tier analysis pipeline: (i) an SVM-based ab initio screen for potent hairpins, plus homologs of known miRNAs, (ii) an orthology delineation procedure and (iii) an SVM-based classifier of the ortholog multiple sequence alignments. The web interface provides direct access to putative miRNA annotations, ortholog multiple alignments, RNA secondary structure conservation, and sequence data. The miROrtho data are conceptually complementary to the miRBase catalog of experimentally verified miRNA sequences, providing a consistent comparative genomics perspective as well as identifying many novel miRNA genes with strong evolutionary support.

[1]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[2]  Ola R. Snøve,et al.  Reliable prediction of Drosha processing sites improves microRNA gene prediction. , 2007, Bioinformatics.

[3]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[4]  Jon D. McAuliffe,et al.  Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome , 2003, Science.

[5]  Christine G Elsik,et al.  Computational and transcriptional evidence for microRNAs in the honey bee genome , 2007, Genome Biology.

[6]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[7]  Santosh K. Mishra,et al.  De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures , 2007, Bioinform..

[8]  C. Croce,et al.  MicroRNA signatures in human cancers , 2006, Nature Reviews Cancer.

[9]  Byoung-Tak Zhang,et al.  ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs , 2006, Nucleic Acids Res..

[10]  Jin-Wu Nam,et al.  Genomics of microRNA. , 2006, Trends in genetics : TIG.

[11]  S. Cox,et al.  Evidence that miRNAs are different from other RNAs , 2006, Cellular and Molecular Life Sciences CMLS.

[12]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[13]  Peter F. Stadler,et al.  Prediction of locally stable RNA secondary structures for genome-wide surveys , 2004, Bioinform..

[14]  Fei Li,et al.  Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine , 2005, BMC Bioinformatics.

[15]  Chuong B. Do,et al.  ProbCons: Probabilistic consistency-based multiple sequence alignment. , 2005, Genome research.

[16]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[17]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[18]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[19]  Sean R. Eddy,et al.  Rfam: annotating non-coding RNAs in complete genomes , 2004, Nucleic Acids Res..

[20]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[21]  Phillip D Zamore,et al.  microPrimer: the biogenesis and function of microRNA , 2005, Development.

[22]  Yves Van de Peer,et al.  Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences , 2004, Bioinform..

[23]  P. Stadler,et al.  Secondary structure prediction for aligned RNA sequences. , 2002, Journal of molecular biology.

[24]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[25]  Robert Giegerich,et al.  RNAshapes: an integrated RNA analysis package based on abstract shapes. , 2006, Bioinformatics.

[26]  R. Aharonov,et al.  Identification of hundreds of conserved and nonconserved human microRNAs , 2005, Nature Genetics.

[27]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[28]  G. Church,et al.  Computational and experimental identification of C. elegans microRNAs. , 2003, Molecular cell.

[29]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[30]  Peng Jiang,et al.  MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features , 2007, Nucleic Acids Res..

[31]  Eugene Berezikov,et al.  Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. , 2006, Genome research.

[32]  Torbjørn Rognes,et al.  PARALIGN: rapid and sensitive sequence similarity searches powered by parallel computing technology , 2005, Nucleic Acids Res..

[33]  D. Higgins,et al.  R-Coffee: a method for multiple alignment of non-coding RNA , 2008, Nucleic acids research.

[34]  Mihaela Zavolan,et al.  Identification of Clustered Micrornas Using an Ab Initio Prediction Method , 2022 .

[35]  Chang-Zheng Chen,et al.  MicroRNAs as oncogenes and tumor suppressors. , 2005, The New England journal of medicine.

[36]  Thomas Tuschl,et al.  Identification and characterization of small RNAs involved in RNA silencing , 2005, FEBS letters.

[37]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[38]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[39]  George A Calin,et al.  MicroRNAs and cancer: Profile, profile, profile , 2007, International journal of cancer.

[40]  Peter F Stadler,et al.  Fast and reliable prediction of noncoding RNAs , 2005, Proc. Natl. Acad. Sci. USA.

[41]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[42]  Evgeny M. Zdobnov,et al.  OrthoDB: the hierarchical catalog of eukaryotic orthologs , 2007, Nucleic Acids Res..

[43]  V. Ambros The functions of animal microRNAs , 2004, Nature.