An Adaptive Moving Mesh Method for Two-Dimensional Relativistic Hydrodynamics

This paper extends the adaptive moving mesh method developed by Tang and Tang [36] to two-dimensional (2D) relativistic hydrodynamic (RHD) equations. The algorithm consists of two “independent” parts: the time evolution of the RHD equations and the (static) mesh iteration redistribution. In the first part, the RHD equations are discretized by using a high resolution finite volume scheme on the fixed but nonuniform meshes without the full characteristic decomposition of the governing equations. The second part is an iterative procedure. In each iteration, the mesh points are first redistributed, and then the cell averages of the conservative variables are remapped onto the new mesh in a conservative way. Several numerical examples are given to demonstrate the accuracy and effectiveness of the proposed method.

[1]  Rosa Donat,et al.  A Flux-Split Algorithm applied to Relativistic Flows , 1998 .

[2]  L. Petzold,et al.  Moving Mesh Methods with Upwinding Schemes for Time-Dependent PDEs , 1997 .

[3]  E. Müller,et al.  Numerical Hydrodynamics in Special Relativity , 1999, Living reviews in relativity.

[4]  G. Bodo,et al.  The Piecewise Parabolic Method for Multidimensional Relativistic Fluid Dynamics , 2005, astro-ph/0505200.

[5]  Weiqun Zhang,et al.  RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code , 2005, astro-ph/0505481.

[6]  J. Brackbill An adaptive grid with directional control , 1993 .

[7]  S. A. E. G. Falle,et al.  An upwind numerical scheme for relativistic hydrodynamics with a general equation of state , 1996 .

[8]  Philip A. Hughes,et al.  Simulations of Relativistic Extragalactic Jets , 1994 .

[9]  J. Font,et al.  Multidimensional relativistic hydrodynamics: characteristics fields and modern high-resolution shock-capturing schemes , 1994 .

[10]  Ewald Müller,et al.  The analytical solution of the Riemann problem in relativistic hydrodynamics , 1994, Journal of Fluid Mechanics.

[11]  Robert D. Russell,et al.  Adaptivity with moving grids , 2009, Acta Numerica.

[12]  J. Flaherty,et al.  An Adaptive Finite Element Method for Initial-Boundary Value Problems for Partial Differential Equations , 1982 .

[13]  James R. Wilson Numerical Study of Fluid Flow in a Kerr Space , 1972 .

[14]  Keith Miller,et al.  Moving Finite Elements. I , 1981 .

[15]  WENLONG DAI,et al.  An Iterative Riemann Solver for Relativistic Hydrodynamics , 1997, SIAM J. Sci. Comput..

[16]  Paul Andries Zegeling,et al.  Balanced monitoring of flow phenomena in moving mesh methods , 2009 .

[17]  G. Mellema,et al.  General Relativistic Hydrodynamics with a Roe solver , 1994, astro-ph/9411056.

[18]  Weiqing Ren,et al.  An Iterative Grid Redistribution Method for Singular Problems in Multiple Dimensions , 2000 .

[19]  Ee Han,et al.  Accuracy of the Adaptive GRP Scheme and the Simulation of 2-D Riemann Problems for Compressible Euler Equations , 2011 .

[20]  Jianqiang Han,et al.  An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics , 2007, J. Comput. Phys..

[21]  Pingwen Zhang,et al.  A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions , 2002 .

[22]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[23]  Robert D. Russell,et al.  Anr-Adaptive Finite Element Method Based upon Moving Mesh PDEs , 1999 .

[24]  A. M. Winslow Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[25]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .

[26]  Dinshaw S. Balsara,et al.  Riemann Solver for Relativistic Hydrodynamics , 1994 .

[27]  Claus-Dieter Munz,et al.  New Algorithms for Ultra-relativistic Numerical Hydrodynamics , 1993 .

[28]  J. Font,et al.  Assessment of a high-resolution central scheme for the solution of the relativistic hydrodynamics equations , 2004, astro-ph/0407541.

[29]  Ruo Li,et al.  Moving Mesh Finite Element Methods for the Incompressible Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[30]  A. Dvinsky Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .

[31]  Yunqing Huang,et al.  Moving mesh methods with locally varying time steps , 2004 .

[32]  James R. Wilson A numerical method for relativistic hydrodynamics , 1979 .

[33]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .

[34]  N. Bucciantini,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .

[35]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[36]  Thomas Y. Hou,et al.  An efficient dynamically adaptive mesh for potentially singular solutions , 2001 .

[37]  Pingwen Zhang,et al.  Second-Order Accurate Godunov Scheme for Multicomponent Flows on Moving Triangular Meshes , 2008, J. Sci. Comput..

[38]  Desheng Wang,et al.  A three-dimensional adaptive method based on the iterative grid redistribution , 2004 .

[39]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[40]  Pingwen Zhang,et al.  An adaptive mesh redistribution method for nonlinear Hamilton--Jacobi equations in two-and three-dimensions , 2003 .

[41]  S.S.M. Wong,et al.  Relativistic Hydrodynamics and Essentially Non-oscillatory Shock Capturing Schemes , 1995 .

[42]  G. Bodo,et al.  An HLLC Riemann solver for relativistic flows ¿ I. Hydrodynamics , 2005, astro-ph/0506414.

[43]  John M. Stockie,et al.  A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws , 2000, SIAM J. Sci. Comput..