The Migration Stage of Divacancies in Quenched Pure Aluminium, Dilute Aluminium Alloys, and Pure Copper Studied by Positron Annihilation†

It is found that the line-shape parameter h increases and subsequently decreases in the initial region of Stage III, that is below −60°C in quenched pure aluminium and below −40°C in quenched AlTi dilute alloys, respectively. In addition, it is shown that divacancies seem to play an important role on the formation and collapse of small vacancy clusters. It is found that the line-shape parameter h increases remarkably from about −85°C in the initial region of Stage III in quenched pure copper. It is thought that the change in h parameter in this temperature region corresponds to the migration of a more mobile vacancy-type defect, which may be rather a divacancy, than a monovacancy. Es wird gefunden, das im Anfangsbereich der Stufe III, d. i. unterhalb −60°C in abgeschrecktem reinem Aluminium und −40°C in abgeschrecktem verdunnten AlTi-Legierungen der Linienformparameter h ansteigt und danach wieder abfallt. Zusatzlich wird gezeigt, das Doppelleerstellen eine wesentliche Rolle bei der Bildung und beim Kollaps von kleinen Leerstellenclustern spielen. Es wird gefunden, das der Linienformparameter h betrachtlich ansteigt von etwa −85°C an im Anfangsbereich der Stufe III in abgeschrecktem reinem Kupfer. Es wird angenommen, das die Anderung des h-Parameters in diesem Temperaturbereich der Wanderung eines beweglicheren Leerstellen-Defekts entspricht, der eher eine Doppelleerstelle als eine Monovakanz sein konnte.

[1]  M. Doyama,et al.  Formation and growth of vacancy clusters in quenched dilute Al-Si alloys studied by positron annihilation , 1985 .

[2]  P. Lippel,et al.  A monovacancy-divacancy model interpretation of positron annihilation measurements in aluminium , 1984 .

[3]  P. Lippel,et al.  Positron annihilation spectroscopy of the equilibrium vacancy ensemble in aluminium , 1984 .

[4]  M. Doyama,et al.  A first sub-stage in stage III in quenched pure aluminium studied by positron annihilation , 1984 .

[5]  W. Petry,et al.  The nature of point defects in plastically deformed aluminium , 1983 .

[6]  D. Legnini,et al.  Positron annihilation measurement of the vacancy formation enthalpy in copper , 1980 .

[7]  R. W. Siegel,et al.  Measurement of the monovacancy formation enthalpy in copper , 1979 .

[8]  W. Wampler,et al.  Annealing of vacancies in quenched copper studied by positron annihilation , 1978 .

[9]  R. W. Siegel,et al.  A study of vacancy-iron interactions in quenched aluminum , 1978 .

[10]  W. Schilling Self-interstitial atoms in metals , 1978 .

[11]  W. Wampler,et al.  Positron annihilation studies of quenched aluminium , 1978 .

[12]  M. Doyama,et al.  Recovery study of copper electron irradiated at 130 K by positron lifetime , 1977 .

[13]  B. Lengeler,et al.  The formation and migration energies of vacancies in quenched copper , 1976 .

[14]  S. Mantl,et al.  Direct Evidence for Vacancy Clustering in Electron-Irradiated Copper by Positron Annihilation , 1975 .

[15]  J. Hillairet,et al.  Interaction entre lacunes dans l'aluminium trempé à 4°K , 1973 .

[16]  A. Sato,et al.  Second Order Electrical Resistivity Decay Quenched Aluminum , 1970 .

[17]  M. Kiritani,et al.  Formation of Dislocation Loops at Low Temperatures in Quenched Aluminum , 1969 .

[18]  A. Sato,et al.  Nucleation and Growth of Voids in Quenched Aluminum , 1966 .

[19]  M. Kiritani Nucleation and Growth of Secondary Defects in Quenched Face-Centered Cubic Metals , 1965 .

[20]  A. Damask,et al.  A kinetic theory of nucleation in dilute solid solutions; Application to the precipitation of carbon and nitrogen in α-iron , 1965 .

[21]  M. Kiritani Formation of Voids and Dislocation Loops in Quenched Aluminum , 1964 .

[22]  R. Simmons,et al.  Measurement of Equilibrium Concentrations of Vacancies in Copper , 1963 .