Microenvironment in Acute Myeloid Leukemia: focus on senescence mechanisms, therapeutic interactions and future directions.

[1]  S. Pervaiz,et al.  Therapeutic Potential of a Senolytic Approach in a Murine Model of Chronic GVHD , 2023, Biology.

[2]  K. Mrozik,et al.  Mesenchymal stromal cell senescence in haematological malignancies , 2023, Cancer and Metastasis Reviews.

[3]  M. Voso,et al.  Impairment of FOXM1 expression in mesenchymal cells from patients with myeloid neoplasms, de novo and therapy-related, may compromise their ability to support hematopoiesis , 2022, Scientific reports.

[4]  Sharad Kumar,et al.  A senescence stress secretome is a hallmark of therapy-related myeloid neoplasm stromal tissue occurring soon after cytotoxic exposure , 2022, Leukemia.

[5]  L. Lerman,et al.  Cellular senescence: the good, the bad and the unknown , 2022, Nature Reviews Nephrology.

[6]  C. Zhan,et al.  The immunomodulatory role of all-trans retinoic acid in tumor microenvironment , 2022, Clinical and Experimental Medicine.

[7]  B. Ebert,et al.  Diagnosis and Management of AML in Adults: 2022 ELN Recommendations from an International Expert Panel. , 2022, Blood.

[8]  C. Drenberg,et al.  Lymphocyte Exhaustion in AML Patients and Impacts of HMA/Venetoclax or Intensive Chemotherapy on Their Biology , 2022, Cancers.

[9]  M. Salazar-Terreros,et al.  In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression , 2022, International journal of molecular sciences.

[10]  P. Pedrazzoli,et al.  Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2022 , 2022, Bone Marrow Transplantation.

[11]  M. Konopleva,et al.  Venetoclax combined with FLAG‐IDA induction and consolidation in newly diagnosed acute myeloid leukemia , 2022, American journal of hematology.

[12]  J. Vernot,et al.  Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities , 2022, Journal of personalized medicine.

[13]  M. Voso,et al.  Atypical Rearrangements in APL-Like Acute Myeloid Leukemias: Molecular Characterization and Prognosis , 2022, Frontiers in Oncology.

[14]  S. Haas,et al.  Cancer stem cells: The adventurous journey from hematopoietic to leukemic stem cells , 2022, Cell.

[15]  A. Tzankov,et al.  Tumor Microenvironment in Acute Myeloid Leukemia: Adjusting Niches , 2022, Frontiers in Immunology.

[16]  M. Aurrand-Lions,et al.  Adhesion Molecules Involved in Stem Cell Niche Retention During Normal Haematopoiesis and in Acute Myeloid Leukaemia , 2021, Frontiers in Immunology.

[17]  Sandra Pinho,et al.  Leukemic Stem Cells: From Leukemic Niche Biology to Treatment Opportunities , 2021, Frontiers in Immunology.

[18]  Yangqiu Li,et al.  TIM-3 in Leukemia; Immune Response and Beyond , 2021, Frontiers in Oncology.

[19]  Kevin M. Woods,et al.  Dynamic Changes of the Bone Marrow Niche: Mesenchymal Stromal Cells and Their Progeny During Aging and Leukemia , 2021, Frontiers in Cell and Developmental Biology.

[20]  M. Serafini,et al.  Catch me if you can: how AML and its niche escape immunotherapy , 2021, Leukemia.

[21]  Jian Huang,et al.  Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development , 2021, Experimental Hematology & Oncology.

[22]  M. Guzman,et al.  Macrophages in Acute Myeloid Leukaemia: Significant Players in Therapy Resistance and Patient Outcomes , 2021, Frontiers in Cell and Developmental Biology.

[23]  Y. Kawakami,et al.  Cascade of Inflammatory, Fibrotic Processes, and Stress-Induced Senescence in Chronic GVHD-Related Dry Eye Disease , 2021, International journal of molecular sciences.

[24]  H. Kantarjian,et al.  Acute Myeloid Leukemia: Historical Perspective and Progress in Research and Therapy Over 5 Decades. , 2021, Clinical lymphoma, myeloma & leukemia.

[25]  H. Kantarjian,et al.  De novo acute myeloid leukemia: A population‐based study of outcome in the United States based on the Surveillance, Epidemiology, and End Results (SEER) database, 1980 to 2017 , 2021, Cancer.

[26]  M. Minden,et al.  Venetoclax enhances T cell-mediated anti-leukemic activity by increasing ROS production. , 2021, Blood.

[27]  R. Darley,et al.  Reactive Oxygen Species Rewires Metabolic Activity in Acute Myeloid Leukemia , 2021, Frontiers in Oncology.

[28]  S. Yamasaki,et al.  Relapse of acute myeloid leukemia after allogeneic hematopoietic cell transplantation: clinical features and outcomes , 2020, Bone Marrow Transplantation.

[29]  Saeid Taghiloo,et al.  Immune evasion mechanisms in acute myeloid leukemia: A focus on immune checkpoint pathways. , 2020, Critical reviews in oncology/hematology.

[30]  J. Welch,et al.  10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial. , 2020, The Lancet. Haematology.

[31]  A. Letai,et al.  Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. , 2020, The New England journal of medicine.

[32]  K. Strauch,et al.  Sorafenib Maintenance After Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia With FLT3-Internal Tandem Duplication Mutation (SORMAIN). , 2020, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[33]  H. Okano,et al.  Senescence‐associated secretory phenotype promotes chronic ocular graft‐vs‐host disease in mice and humans , 2020, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[34]  D. Huang,et al.  Arsenic trioxide and all-trans retinoic acid suppress the expression of FLT3-ITD , 2020, Leukemia & lymphoma.

[35]  M. Voso,et al.  When Poisons Cure: The Case of Arsenic in Acute Promyelocytic Leukemia , 2020, Chemotherapy.

[36]  Yimei Hong,et al.  Mesenchymal Stem Cell Senescence and Rejuvenation: Current Status and Challenges , 2020, Frontiers in Cell and Developmental Biology.

[37]  J. Vernot Senescence-Associated Pro-inflammatory Cytokines and Tumor Cell Plasticity , 2020, Frontiers in Molecular Biosciences.

[38]  Q. Niu,et al.  Role of PML SUMOylation in arsenic trioxide-induced fibrosis in HSCs. , 2020, Life sciences.

[39]  Yue Han,et al.  Comparative efficacy of 20 graft-versus-host disease prophylaxis therapies for patients after hematopoietic stem-cell transplantation: A multiple-treatments network meta-analysis. , 2020, Critical reviews in oncology/hematology.

[40]  J. Gribben,et al.  Bone marrow niches in haematological malignancies , 2020, Nature Reviews Cancer.

[41]  Guoji Guo,et al.  Live-animal imaging of native hematopoietic stem and progenitor cells , 2019, Nature.

[42]  R. Larson,et al.  Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. , 2019, The New England journal of medicine.

[43]  N. Schmitz,et al.  Long-term results of all-trans retinoic acid and arsenic trioxide in non-high-risk acute promyelocytic leukemia: update of the APL0406 Italian-German randomized trial , 2019, Leukemia.

[44]  M. Martelli,et al.  The “ultimate” haploidentical transplantation for the elderly with high-risk acute myeloid leukemia , 2019, Bone Marrow Transplantation.

[45]  M. Caligiuri,et al.  Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion , 2019, Nature.

[46]  H. Dombret,et al.  Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial. , 2019, The Lancet. Oncology.

[47]  Y. Kong Poor graft function after allogeneic hematopoietic stem cell transplantation-an old complication with new insights☆. , 2019, Seminars in hematology.

[48]  Monika S. Kowalczyk,et al.  A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia , 2019, Cell.

[49]  L. Bullinger,et al.  NCAM1 (CD56) promotes leukemogenesis and confers drug resistance in AML. , 2019, Blood.

[50]  P. Frenette,et al.  Haematopoietic stem cell activity and interactions with the niche , 2019, Nature Reviews Molecular Cell Biology.

[51]  O. Lyublinskaya,et al.  High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells , 2019, Scientific Reports.

[52]  R. Schlenk,et al.  Targeting FLT3 mutations in AML: review of current knowledge and evidence , 2019, Leukemia.

[53]  U. Germing,et al.  Relapse of Acute Myeloid Leukemia after Allogeneic Stem Cell Transplantation: Prevention, Detection, and Treatment , 2019, International journal of molecular sciences.

[54]  W. Faridi,et al.  Significant Risk of Graft-versus-Host Disease with Exposure to Checkpoint Inhibitors before and after Allogeneic Transplantation. , 2019, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[55]  Xi C. He,et al.  N-Cadherin-Expressing Bone and Marrow Stromal Progenitor Cells Maintain Reserve Hematopoietic Stem Cells. , 2019, Cell reports.

[56]  Miran Jang,et al.  Midostaurin reduces Regulatory T cells markers in Acute Myeloid Leukemia , 2018, Scientific Reports.

[57]  Yu Wang,et al.  Dysfunctional Bone Marrow Mesenchymal Stem Cells in Patients with Poor Graft Function after Allogeneic Hematopoietic Stem Cell Transplantation. , 2018, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[58]  R. Medema,et al.  FoxM1 repression during human aging leads to mitotic decline and aneuploidy-driven full senescence , 2018, Nature Communications.

[59]  Yu Wang,et al.  An unbalanced monocyte macrophage polarization in the bone marrow microenvironment of patients with poor graft function after allogeneic haematopoietic stem cell transplantation , 2018, British journal of haematology.

[60]  T. Jaffredo,et al.  The crosstalk between hematopoietic stem cells and their niches , 2018, Current opinion in hematology.

[61]  J. Wagner,et al.  First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. , 2018, Blood.

[62]  L. Raida,et al.  Graft versus Host Disease: From Basic Pathogenic Principles to DNA Damage Response and Cellular Senescence , 2018, Mediators of inflammation.

[63]  K. Tsubota,et al.  Inhibition of Vascular Adhesion Protein‐1 for Treatment of Graft‐Versus‐Host Disease in Mice , 2018, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[64]  M. Caligiuri,et al.  Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells , 2018, Nature Medicine.

[65]  F. Rosenbauer,et al.  Bone marrow laminins influence hematopoietic stem and progenitor cell cycling and homing to the bone marrow. , 2018, Matrix biology : journal of the International Society for Matrix Biology.

[66]  Atul Kumar,et al.  Mesenchymal stem cells show functional defect and decreased anti-cancer effect after exposure to chemotherapeutic drugs , 2018, Journal of Biomedical Science.

[67]  Catriona McLean,et al.  Inhibition of Endosteal Vascular Niche Remodeling Rescues Hematopoietic Stem Cell Loss in AML , 2018, Cell stem cell.

[68]  B. Leber,et al.  Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche , 2017, Nature Cell Biology.

[69]  D. Edwards,et al.  NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. , 2017, Blood.

[70]  J. Gribben,et al.  Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to Disease Progression and Drug Response in Acute Myeloid Leukemia , 2017, Cancer cell.

[71]  F. Locatelli,et al.  Outcome of children with acute leukemia given HLA-haploidentical HSCT after αβ T-cell and B-cell depletion. , 2017, Blood.

[72]  R. Davis,et al.  AML-induced osteogenic differentiation in mesenchymal stromal cells supports leukemia growth. , 2017, JCI insight.

[73]  C. Bloomfield,et al.  Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation , 2017, The New England journal of medicine.

[74]  M. L. Le Beau,et al.  Inhibition of WNT signaling in the bone marrow niche prevents the development of MDS in the Apcdel/+ MDS mouse model. , 2017, Blood.

[75]  K. Tarte,et al.  Alteration Analysis of Bone Marrow Mesenchymal Stromal Cells from De Novo Acute Myeloid Leukemia Patients at Diagnosis. , 2017, Stem cells and development.

[76]  Xue-Qun Luo,et al.  Arsenic trioxide and all-trans-retinoic acid selectively exert synergistic cytotoxicity against FLT3-ITD AML cells via co-inhibition of FLT3 signaling pathways , 2017, Leukemia & lymphoma.

[77]  K. Tsubota,et al.  Novel Treatment of Chronic Graft-Versus-Host Disease in Mice Using the ER Stress Reducer 4-Phenylbutyric Acid , 2017, Scientific Reports.

[78]  M. Lohoff,et al.  PD-1 checkpoint blockade in patients with relapsed AML after allogeneic stem cell transplantation , 2017, Bone Marrow Transplantation.

[79]  J. Ritz,et al.  The Biology of Chronic Graft-versus-Host Disease: A Task Force Report from the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease. , 2017, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[80]  Queen Intan Nurrahmah,et al.  Arsenic trioxide induces ROS activity and DNA damage, leading to G0/G1 extension in skin fibroblasts through the ATM-ATR-associated Chk pathway , 2017, Environmental Science and Pollution Research.

[81]  N. Myakova,et al.  Tcrαβ+/CD19+-Depletion in Hematopoietic Stem Cells Transplantation from Matched Unrelated and Haploidentical Donors Following Treosulfan or TBI-Based Conditioning in Pediatric Acute Lymphoblastic Leukemia Patients , 2016 .

[82]  D. Scadden,et al.  Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment , 2016, Nature.

[83]  Xiao-hui Zhang,et al.  Increased Type 1 Immune Response in the Bone Marrow Immune Microenvironment of Patients with Poor Graft Function after Allogeneic Hematopoietic Stem Cell Transplantation. , 2016, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[84]  Philip R. Gafken,et al.  Biomarker Panel for Chronic Graft-Versus-Host Disease. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[85]  V. Imbert,et al.  Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. , 2016, Blood.

[86]  F. Hodi,et al.  Ipilimumab for Patients with Relapse after Allogeneic Transplantation. , 2016, The New England journal of medicine.

[87]  N. Kröger,et al.  Incidence and risk factors of poor graft function after allogeneic stem cell transplantation for myelofibrosis , 2016, Bone Marrow Transplantation.

[88]  Fadwa Said,et al.  Indoleamine 2,3-dioxygenase and regulatory T cells in acute myeloid leukemia , 2016, Hematology.

[89]  Xiao-hui Zhang,et al.  The bone marrow microenvironment is similarly impaired in allogeneic hematopoietic stem cell transplantation patients with early and late poor graft function , 2016, Bone Marrow Transplantation.

[90]  V. Bobrynina,et al.  TCR-alpha/beta and CD19 depletion and treosulfan-based conditioning regimen in unrelated and haploidentical transplantation in children with acute myeloid leukemia , 2016, Bone Marrow Transplantation.

[91]  D. Link,et al.  The hematopoietic stem cell niche in homeostasis and disease. , 2015, Blood.

[92]  R. Hills,et al.  Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. , 2015, The Lancet. Oncology.

[93]  Yu-Hong Chen,et al.  The incidence, risk factors, and outcomes of primary poor graft function after unmanipulated haploidentical stem cell transplantation , 2015, Annals of Hematology.

[94]  Baojie Li,et al.  Mesenchymal stem cell aging: Mechanisms and influences on skeletal and non-skeletal tissues , 2015, Experimental biology and medicine.

[95]  Jace W. Jones,et al.  All-Trans Retinoic Acid Activity in Acute Myeloid Leukemia: Role of Cytochrome P450 Enzyme Expression by the Microenvironment , 2015, PloS one.

[96]  M. Ebinger,et al.  Improved immune recovery after transplantation of TCRαβ/CD19-depleted allografts from haploidentical donors in pediatric patients , 2015, Bone Marrow Transplantation.

[97]  H. Dombret,et al.  Retinoic acid and arsenic trioxide trigger degradation of mutated NPM1, resulting in apoptosis of AML cells. , 2015, Blood.

[98]  B. Falini,et al.  Arsenic trioxide and all-trans retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells. , 2015, Blood.

[99]  P. Frenette,et al.  Making sense of hematopoietic stem cell niches. , 2015, Blood.

[100]  P. Bianco,et al.  Skeletal stem cells , 2015, Development.

[101]  M. Pasquini,et al.  Primary Graft Failure after Myeloablative Allogeneic Hematopoietic Cell Transplantation for Hematologic Malignancies , 2015, Leukemia.

[102]  C. Preudhomme,et al.  Prognosis and monitoring of core-binding factor acute myeloid leukemia: current and emerging factors , 2015, Expert review of hematology.

[103]  S. Armstrong,et al.  Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. , 2014, Cell stem cell.

[104]  B. Falini,et al.  HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. , 2014, Blood.

[105]  B. Isermann,et al.  Clinically relevant doses of FLT3-kinase inhibitors quizartinib and midostaurin do not impair T-cell reactivity and function , 2014, Haematologica.

[106]  J. Schwaller,et al.  CXCR4-SERINE339 regulates cellular adhesion, retention and mobilization, and is a marker for poor prognosis in acute myeloid leukemia , 2014, Leukemia.

[107]  K. Tsai,et al.  Effects of Arsenic on Osteoblast Differentiation in Vitro and on Bone Mineral Density and Microstructure in Rats , 2014, Environmental health perspectives.

[108]  S. Morrison,et al.  The bone marrow niche for haematopoietic stem cells , 2014, Nature.

[109]  Yan-rong Liu,et al.  Association of an impaired bone marrow microenvironment with secondary poor graft function after allogeneic hematopoietic stem cell transplantation. , 2013, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[110]  D. Blaise,et al.  Outcome of relapse after allogeneic stem cell transplant in patients with acute myeloid leukemia , 2013, Leukemia & lymphoma.

[111]  M. Remberger,et al.  Graft failure in the modern era of allogeneic hematopoietic SCT , 2013, Bone Marrow Transplantation.

[112]  A. Jemal,et al.  Cancer statistics, 2013 , 2013, CA: a cancer journal for clinicians.

[113]  F. Goldwasser,et al.  Arsenic Trioxide Exerts Antitumor Activity through Regulatory T Cell Depletion Mediated by Oxidative Stress in a Murine Model of Colon Cancer , 2012, The Journal of Immunology.

[114]  T. Suda,et al.  Role of N‐cadherin in the regulation of hematopoietic stem cells in the bone marrow niche , 2012, Annals of the New York Academy of Sciences.

[115]  A. Salminen,et al.  Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). , 2012, Cellular signalling.

[116]  Kazuhiro Morishita,et al.  The Increased Expression of Integrin α6 (ITGA6) Enhances Drug Resistance in EVI1high Leukemia , 2012, PloS one.

[117]  Susan E. Murray,et al.  NF-κB–inducing kinase plays an essential T cell–intrinsic role in graft-versus-host disease and lethal autoimmunity in mice. , 2011, The Journal of clinical investigation.

[118]  T. Wynn,et al.  Protective and pathogenic functions of macrophage subsets , 2011, Nature Reviews Immunology.

[119]  Hongwei Ma,et al.  Targeting levels or oligomerization of nucleophosmin 1 induces differentiation and loss of survival of human AML cells with mutant NPM1. , 2011, Blood.

[120]  Charles P. Lin,et al.  In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche , 2011, Nature.

[121]  D. Wiseman Donor cell leukemia: a review. , 2011, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[122]  B. Falini,et al.  Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. , 2011, Blood.

[123]  A. Tefferi,et al.  Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[124]  H. Zhang,et al.  Arsenic trioxide promotes senescence and regulates the balance of adipogenic and osteogenic differentiation in human mesenchymal stem cells. , 2011, Acta biochimica et biophysica Sinica.

[125]  J. Bartek,et al.  Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16ink4a , 2011, Cell cycle.

[126]  Kelly Sanders,et al.  Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells , 2011, Annals of Hematology.

[127]  Ben D. MacArthur,et al.  Mesenchymal and haematopoietic stem cells form a unique bone marrow niche , 2010, Nature.

[128]  S. Kashima,et al.  Effects of high-dose chemotherapy on bone marrow multipotent mesenchymal stromal cells isolated from lymphoma patients. , 2010, Experimental hematology.

[129]  Ya-Wen Chen,et al.  Arsenic induces cell apoptosis in cultured osteoblasts through endoplasmic reticulum stress. , 2009, Toxicology and applied pharmacology.

[130]  T. Gajewski,et al.  PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. , 2009, Blood.

[131]  E. Holler,et al.  Graft-versus-host disease , 2009, The Lancet.

[132]  B. Pulendran,et al.  TLR2 dependent induction of vitamin A metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits TH-17 mediated autoimmunity , 2009, Nature Medicine.

[133]  J. Serody,et al.  Ex vivo Inhibition of NF‐κB Signaling in Alloreactive T‐cells Prevents Graft‐Versus‐Host Disease , 2009, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[134]  S. Fröhling,et al.  Gene mutations and response to treatment with all-trans retinoic acid in elderly patients with acute myeloid leukemia. Results from the AMLSG Trial AML HD98B , 2009, Haematologica.

[135]  Judith Campisi,et al.  Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor , 2008, PLoS biology.

[136]  H. Döhner,et al.  Dasatinib exerts an immunosuppressive effect on CD8+ T cells specific for viral and leukemia antigens. , 2008, Experimental hematology.

[137]  V. Beneš,et al.  Replicative Senescence of Mesenchymal Stem Cells: A Continuous and Organized Process , 2008, PloS one.

[138]  Daniel Lucas,et al.  Haematopoietic stem cell release is regulated by circadian oscillations , 2008, Nature.

[139]  M. Rojewski,et al.  Nilotinib hampers the proliferation and function of CD8+ T lymphocytes through inhibition of T cell receptor signalling , 2008, Journal of cellular and molecular medicine.

[140]  Satoshi Tanaka,et al.  Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region , 2007, Nature Biotechnology.

[141]  R. Shirkoohi,et al.  All-trans Retinoic Acid Enhances Murine Dendritic Cell Migration to Draining Lymph Nodes via the Balance of Matrix Metalloproteinases and Their Inhibitors1 , 2007, The Journal of Immunology.

[142]  J. Campisi,et al.  Cellular senescence: when bad things happen to good cells , 2007, Nature Reviews Molecular Cell Biology.

[143]  M. Lübbert,et al.  CXCR4 is a prognostic marker in acute myelogenous leukemia. , 2007, Blood.

[144]  M. Graf,et al.  Expression of MAC‐1 (CD11b) in acute myeloid leukemia (AML) is associated with an unfavorable prognosis , 2006, American journal of hematology.

[145]  P. Hari,et al.  NF-kappaB as a target for the prevention of graft-versus-host disease: comparative efficacy of bortezomib and PS-1145. , 2006, Blood.

[146]  S. Jalkanen,et al.  Cell-surface enzymes in control of leukocyte trafficking , 2005, Nature Reviews Immunology.

[147]  Y. Ko,et al.  Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size , 2005, The Journal of experimental medicine.

[148]  A. Hanash,et al.  Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. , 2005, Blood.

[149]  Hans Clevers,et al.  FoxM1 is required for execution of the mitotic programme and chromosome stability , 2005, Nature Cell Biology.

[150]  R. Handgretinger,et al.  Human γδ T Cells From G-CSF-Mobilized Donors Retain Strong Tumoricidal Activity and Produce Immunomodulatory Cytokines After Clinical-Scale Isolation , 2005 .

[151]  L. Verdonck,et al.  Extra-domain-A fibronectin: a new marker of fibrosis in cutaneous graft-versus-host disease. , 2004, The Journal of investigative dermatology.

[152]  H. Drexler,et al.  Mini ReviewFLT3: Receptor and Ligand , 2004 .

[153]  D. Klatzmann,et al.  Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. , 2003, The Journal of clinical investigation.

[154]  C. Fathman,et al.  CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation , 2003, Nature Medicine.

[155]  H. Kuroda,et al.  Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia , 2003, Nature Medicine.

[156]  D. Gabrilovich,et al.  Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species , 2003, Journal of leukocyte biology.

[157]  A. Venditti,et al.  Amount of spontaneous apoptosis detected by Bax/Bcl-2 ratio predicts outcome in acute myeloid leukemia (AML). , 2003, Blood.

[158]  David Klatzmann,et al.  CD4+CD25+ Immunoregulatory T Cells , 2002, The Journal of experimental medicine.

[159]  B. Blazar,et al.  The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. , 2002, Blood.

[160]  P. Chilton,et al.  The role of alphabeta- and gammadelta-T cells in allogenic donor marrow on engraftment, chimerism, and graft-versus-host disease. , 2001, Transplantation.

[161]  S. Ferrari,et al.  Induction of a functional vitamin D receptor in all-trans-retinoic acid-induced monocytic differentiation of M2-type leukemic blast cells. , 1999, Cancer research.

[162]  J. Jönsson,et al.  Characterization of Bone Marrow Laminins and Identification of 5-Containing Laminins as Adhesive Proteins for Multipotent Hematopoietic FDCP-Mix Cells , 1999 .

[163]  H. Kluin-Nelemans,et al.  A strong expression of CD44-6v correlates with shorter survival of patients with acute myeloid leukemia. , 1998, Blood.

[164]  J. Dick,et al.  Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell , 1997, Nature Medicine.

[165]  S. Ergün,et al.  Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. , 1997, Blood.

[166]  T. Naoe,et al.  In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins , 1996 .

[167]  E. Schiavone,et al.  All‐trans retinoic acid promotes a differential regulation of adhesion molecules on acute myeloid leukaemia blast cells , 1994, British journal of haematology.

[168]  M. Caligiuri,et al.  A cell initiating human acute myeloid leukaemia after transplantation into SCID mice , 1994, Nature.

[169]  J. Magaud,et al.  High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. , 1993, Blood.

[170]  Zhen-yi Wang,et al.  Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. , 1988, Haematology and blood transfusion.

[171]  A. Butturini,et al.  Graft-versus-leukemia following bone marrow transplantation. , 1987, Bone marrow transplantation.

[172]  R. Elashoff,et al.  Treatment of donor bone marrow with monoclonal anti-T-cell antibody and complement for the prevention of graft-versus-host disease. A prospective, randomized, double-blind trial. , 1986, Annals of internal medicine.

[173]  A. Boskey,et al.  Bone structure, composition, and mineralization. , 1984, The Orthopedic clinics of North America.

[174]  M. Voso,et al.  Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes. , 2016, Experimental hematology.

[175]  D. Scadden,et al.  Hematopoietic Stem Cell and Its Bone Marrow Niche. , 2016, Current topics in developmental biology.

[176]  S. Nimmagadda,et al.  The intricate role of CXCR4 in cancer. , 2014, Advances in cancer research.

[177]  E. Lam,et al.  FOXM1: From cancer initiation to progression and treatment. , 2012, Biochimica et biophysica acta.

[178]  David W. Rowe,et al.  Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche , 2009, Nature.

[179]  René H Medema,et al.  FoxM1: at the crossroads of ageing and cancer. , 2007, Biochimica et biophysica acta.

[180]  P. Fung,et al.  Plasma nitric oxide is associated with the occurrence of moderate to severe acute graft-versus-host disease in haemopoietic stem cell transplant recipients. , 2001, Haematologica.

[181]  J. Sosman,et al.  The graft versus leukemia effect: possible mechanisms and clinical significance to the biologic therapy of leukemia. , 1991, Bone marrow transplantation.

[182]  K. Sullivan,et al.  Graft versus leukemia effect in man: the relapse rate of acute leukemia is lower after allogeneic than after syngeneic marrow transplantation. , 1987, Progress in clinical and biological research.

[183]  H. Deeg,et al.  Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. , 1985, Blood.