A diffusion wavelet approach for 3-D model matching

This paper proposes a new 3D shape retrieval approach based on diffusion wavelets which generalize wavelet analysis and associated signal processing techniques to functions on manifolds and graphs. Unlike current works on 3D matching, which are based either on the topological information of the model or its scatter point distribution information, this approach uses both information for more effective matching. Diffusion wavelets enable both global and local analyses on graphs, and can capture the topology of a surface with the diffusion map of its mesh representation. As a result, both multi-scale properties of the 3D geometric model and the topology among the meshes can be extracted for use in 3D geometric model retrieval. Tests using 3D benchmarks demonstrate that the approach based on diffusion wavelets is effective and performs better than those by spherical wavelet and spherical harmonics in 3D model matching.

[1]  Thomas Bülow,et al.  Surface Representations Using Spherical Harmonics and Gabor Wavelets on the Sphere , 2001 .

[2]  Karthik Ramani,et al.  Three-dimensional shape searching: state-of-the-art review and future trends , 2005, Comput. Aided Des..

[3]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[4]  BENJAMIN BUSTOS,et al.  Feature-based similarity search in 3D object databases , 2005, CSUR.

[5]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: multiscale methods. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Hermann Ney,et al.  Adaptation in statistical pattern recognition using tangent vectors , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Bülent Sankur,et al.  Density-Based 3D Shape Descriptors , 2007, EURASIP J. Adv. Signal Process..

[9]  Marc Rioux,et al.  Nefertiti: a query by content software for three-dimensional models databases management , 1997, Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling (Cat. No.97TB100134).

[10]  Reinhard Klein,et al.  Shape retrieval using 3D Zernike descriptors , 2004, Comput. Aided Des..

[11]  Sang Hun Lee Feature-based multiresolution modeling of solids , 2005, TOGS.

[12]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[13]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[14]  Hao Zhang,et al.  Spectral Methods for Mesh Processing and Analysis , 2007, Eurographics.

[15]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[16]  Chitra Dorai,et al.  Shape Spectrum Based View Grouping and Matching of 3D Free-Form Objects , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Hamid Laga,et al.  Statistical spherical wavelet moments for Content-based 3D model retrieval , 2007 .

[18]  David P. Dobkin,et al.  A search engine for 3D models , 2003, TOGS.

[19]  Marc Rioux,et al.  Description of shape information for 2-D and 3-D objects , 2000, Signal Process. Image Commun..

[20]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[21]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[22]  Hao Zhang,et al.  A spectral approach to shape-based retrieval of articulated 3D models , 2007, Comput. Aided Des..

[23]  Aldo Laurentini,et al.  How Far 3D Shapes Can Be Understood from 2D Silhouettes , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[25]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[26]  Holly E. Rushmeier,et al.  Dominant Texture and Diffusion Distance Manifolds , 2009, Comput. Graph. Forum.

[27]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Ronald R. Coifman,et al.  Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators , 2005, NIPS.

[29]  Sergios Theodoridis,et al.  Pattern Recognition, Third Edition , 2006 .

[30]  Ali Shokoufandeh,et al.  Local feature extraction and matching partial objects , 2006, Comput. Aided Des..

[31]  K. Ramani,et al.  A MULTI-SCALE HIERARCHICAL 3D SHAPE REPRESENTATION FOR SIMILAR SHAPE RETRIEVAL , 2004 .

[32]  Allen M. Waxman,et al.  Adaptive 3-D Object Recognition from Multiple Views , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Dietmar Saupe,et al.  Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics , 2001, 2001 IEEE Fourth Workshop on Multimedia Signal Processing (Cat. No.01TH8564).

[34]  Edwin R. Hancock,et al.  Spectral embedding of graphs , 2003, Pattern Recognit..

[35]  Nasser Khalili,et al.  Multi-scale free-form 3D object recognition using 3D models , 2001, Image Vis. Comput..

[36]  Aaron F. Bobick,et al.  Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets , 2007, IEEE Transactions on Medical Imaging.

[37]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[38]  Phil F. Culverhouse,et al.  3D object recognition from static 2D views using multiple coarse data channels , 1999, Image Vis. Comput..

[39]  Bernard Chazelle,et al.  Matching 3D models with shape distributions , 2001, Proceedings International Conference on Shape Modeling and Applications.

[40]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[41]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.