Enclosing Reachable Sets for Nonlinear Control Systems using Complementarity-Based Intervals

Abstract Enclosing the reachable sets of nonlinear control systems is useful in state estimation and safety verification for chemical process models. We present a new approach for computing time-varying interval bounds for ordinary differential equation models based on differential inequalities. Instead of using interval arithmetic like established approaches, we instead generate bounding information for the right-hand side (RHS) function by optimizing its convex relaxations. Complementarity formulations are explored, and are found to be particularly beneficial if the RHS function is quadratic and we employ the αBB relaxations.

[1]  Alexandre M. Bayen,et al.  A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games , 2005, IEEE Transactions on Automatic Control.

[2]  J. M. Schumacher,et al.  Complementarity systems in optimization , 2004, Math. Program..

[3]  Matthew D. Stuber,et al.  Generalized McCormick relaxations , 2011, J. Glob. Optim..

[4]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[5]  D. Dochain,et al.  On-Line Estimation and Adaptive Control of Bioreactors , 2013 .

[6]  Claire S. Adjiman,et al.  A Rigorous Global Optimization Algorithm for Problems with Ordinary Differential Equations , 2002, J. Glob. Optim..

[7]  James W. Taylor,et al.  Global dynamic optimization for parameter estimation in chemical kinetics. , 2006, The journal of physical chemistry. A.

[8]  Matthew E. Wilhelm,et al.  Corrections to: Differentiable McCormick relaxations , 2018, Journal of Global Optimization.

[9]  Luc Jaulin,et al.  Nonlinear bounded-error state estimation of continuous-time systems , 2002, Autom..

[10]  Kamil A. Khan,et al.  Optimization-based convex relaxations for nonconvex parametric systems of ordinary differential equations , 2021, Mathematical Programming.

[11]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[12]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[13]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[14]  Alexandre M. Bayen,et al.  Computational techniques for the verification of hybrid systems , 2003, Proc. IEEE.

[15]  PAUL I. BARTON,et al.  Bounding the Solutions of Parameter Dependent Nonlinear Ordinary Differential Equations , 2005, SIAM J. Sci. Comput..

[16]  Benoît Chachuat,et al.  Bounding the Solutions of Parametric ODEs: When Taylor Models Meet Differential Inequalities , 2012 .

[17]  M. Stadtherr,et al.  Validated solution of ODEs with parametric uncertainties , 2006 .

[18]  Pravin Varaiya,et al.  On Ellipsoidal Techniques for Reachability Analysis. Part I: External Approximations , 2002, Optim. Methods Softw..

[19]  Vincent Acary,et al.  Siconos: A Software Platform for Modeling, Simulation, Analysis and Control of Nonsmooth Dynamical Systems , 2007 .

[20]  Kai Shen,et al.  Rapid and accurate reachability analysis for nonlinear dynamic systems by exploiting model redundancy , 2017, Comput. Chem. Eng..

[21]  Paul I. Barton,et al.  Differentiable McCormick relaxations , 2016, Journal of Global Optimization.

[22]  Xuejiao Yang,et al.  A comparison of zonotope order reduction techniques , 2018, Autom..

[23]  M. Stadtherr,et al.  Validated solutions of initial value problems for parametric ODEs , 2007 .

[24]  Youdong Lin,et al.  Fault Detection in Nonlinear Continuous-Time Systems with Uncertain Parameters , 2008 .

[25]  V. Lakshmikantham,et al.  Differential and Integral Inequalities , 2019, Springer Optimization and Its Applications.

[26]  Wolfgang Kuehn,et al.  Rigorously computed orbits of dynamical systems without the wrapping effect , 1998, Computing.

[27]  Efstratios N. Pistikopoulos,et al.  Perspectives in Multiparametric Programming and Explicit Model Predictive Control , 2009 .

[28]  Matthias Althoff,et al.  Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization , 2008, 2008 47th IEEE Conference on Decision and Control.

[29]  Nilay Shah,et al.  Quantitative framework for reliable safety analysis , 2002 .

[30]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[31]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[32]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[33]  Paul I. Barton,et al.  Bounds on the reachable sets of nonlinear control systems , 2013, Autom..

[34]  Paul I. Barton,et al.  Bounds on reachable sets using ordinary differential equations with linear programs embedded , 2016, IMA Journal of Mathematical Control and Information.

[35]  Pravin Varaiya,et al.  Ellipsoidal Techniques for Reachability Analysis , 2000, HSCC.

[36]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..