Exploiting equalities in polynomial programming

We propose a novel approach for solving polynomial programs over compact domains with equality constraints. By means of a generic transformation, we show that existing solution schemes for the, typically simpler, problem without equalities can be used to address the problem with equalities.

[1]  Javier Peña,et al.  LMI Approximations for Cones of Positive Semidefinite Forms , 2006, SIAM J. Optim..

[2]  Claus Scheiderer,et al.  Sums of squares on real algebraic surfaces , 2006 .

[3]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[4]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[5]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[6]  Ioana Popescu,et al.  On the Relation Between Option and Stock Prices: A Convex Optimization Approach , 2002, Oper. Res..

[7]  Etienne de Klerk,et al.  Solving Standard Quadratic Optimization Problems via Linear, Semidefinite and Copositive Programming , 2002, J. Glob. Optim..

[8]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[9]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[10]  Jean B. Lasserre,et al.  Semidefinite Programming vs. LP Relaxations for Polynomial Programming , 2002, Math. Oper. Res..

[11]  Monique Laurent,et al.  Semidefinite bounds for the stability number of a graph via sums of squares of polynomials , 2005, Math. Program..

[12]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[13]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[14]  N. Z. Shor Class of global minimum bounds of polynomial functions , 1987 .

[15]  Masakazu Kojima,et al.  SDPARA: SemiDefinite Programming Algorithm paRAllel version , 2003, Parallel Comput..

[16]  P. Parrilo,et al.  Detecting multipartite entanglement , 2004, quant-ph/0407143.

[17]  Shuzhong Zhang,et al.  On Cones of Nonnegative Quadratic Functions , 2003, Math. Oper. Res..

[18]  Y. Nesterov Structure of non-negative polynomials and optimization problems , 1997 .

[19]  Monique Laurent,et al.  Semidefinite representations for finite varieties , 2007, Math. Program..

[20]  Pablo A. Parrilo,et al.  Minimizing Polynomial Functions , 2001, Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science.

[21]  Etienne de Klerk,et al.  Approximation of the Stability Number of a Graph via Copositive Programming , 2002, SIAM J. Optim..

[22]  D. Handelman Representing polynomials by positive linear functions on compact convex polyhedra. , 1988 .

[23]  Paul Van Dooren,et al.  Convex optimization over positive polynomials and filter design , 2000 .

[24]  J. Lasserre Bounds on measures satisfying moment conditions , 2002 .

[25]  Renato D. C. Monteiro,et al.  Large-scale semidefinite programming via a saddle point Mirror-Prox algorithm , 2007, Math. Program..

[26]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[27]  James Demmel,et al.  Minimizing Polynomials via Sum of Squares over the Gradient Ideal , 2004, Math. Program..

[28]  P. Parrilo An explicit construction of distinguished representations of polynomials nonnegative over finite sets , 2002 .

[29]  Jean B. Lasserre,et al.  An Explicit Equivalent Positive Semidefinite Program for Nonlinear 0-1 Programs , 2002, SIAM J. Optim..