Resilience for the Littlewood-Offord Problem

Consider the sum $X(\xi)=\sum_{i=1}^n a_i\xi_i$, where $a=(a_i)_{i=1}^n$ is a sequence of non-zero reals and $\xi=(\xi_i)_{i=1}^n$ is a sequence of i.i.d. Rademacher random variables (that is, $\Pr[\xi_i=1]=\Pr[\xi_i=-1]=1/2$). The classical Littlewood-Offord problem asks for the best possible upper bound on the concentration probabilities $\Pr[X=x]$. In this paper we study a resilience version of the Littlewood-Offord problem: how many of the $\xi_i$ is an adversary typically allowed to change without being able to force concentration on a particular value? We solve this problem asymptotically, and present a few interesting open problems.

[1]  B. Bollobás The evolution of random graphs , 1984 .

[2]  Hans Rohrbach Ein Beitrag zur additiven Zahlentheorie , 1937 .

[3]  Benny Sudakov,et al.  Local resilience of graphs , 2007, Random Struct. Algorithms.

[4]  Noga Alon,et al.  The concentration of the chromatic number of random graphs , 1997, Comb..

[5]  Van Vu,et al.  Optimal Inverse Littlewood-Offord theorems , 2010, 1004.3967.

[6]  J. Littlewood,et al.  On the Number of Real Roots of a Random Algebraic Equation , 1938 .

[7]  Raghu Meka,et al.  Anti-concentration for polynomials of Rademacher random variables and applications in complexity theory , 2015 .

[8]  A. C. Berry The accuracy of the Gaussian approximation to the sum of independent variates , 1941 .

[9]  T. Tao,et al.  From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices , 2008, 0810.2994.

[10]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[11]  P. Erdos Extremal Problems in Number Theory , 2001 .

[12]  V. Vu Random Discrete Matrices , 2006 .

[13]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[14]  J. Gates Introduction to Probability and its Applications , 1992 .

[15]  Kevin P. Costello,et al.  Random symmetric matrices are almost surely nonsingular , 2005, math/0505156.

[16]  András Sárközy,et al.  Über ein Problem von Erdös und Moser , 1965 .

[17]  Raghu Meka,et al.  Anti-concentration for Polynomials of Independent Random Variables , 2016, Theory Comput..

[18]  Zoltán Füredi,et al.  Sphere coverings of the hypercube with incomparable centers , 1990, Discret. Math..

[19]  G. Halász Estimates for the concentration function of combinatorial number theory and probability , 1977 .

[20]  Van H. Vu Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2009 .

[21]  B. Bollobás Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability , 1986 .

[22]  Béla Bollobás,et al.  Random Graphs , 1985 .

[23]  Terence Tao,et al.  A sharp inverse Littlewood‐Offord theorem , 2009, Random Struct. Algorithms.

[24]  Jean Bourgain,et al.  On the singularity probability of discrete random matrices , 2009, 0905.0461.