Resilience for the Littlewood-Offord Problem
暂无分享,去创建一个
[1] B. Bollobás. The evolution of random graphs , 1984 .
[2] Hans Rohrbach. Ein Beitrag zur additiven Zahlentheorie , 1937 .
[3] Benny Sudakov,et al. Local resilience of graphs , 2007, Random Struct. Algorithms.
[4] Noga Alon,et al. The concentration of the chromatic number of random graphs , 1997, Comb..
[5] Van Vu,et al. Optimal Inverse Littlewood-Offord theorems , 2010, 1004.3967.
[6] J. Littlewood,et al. On the Number of Real Roots of a Random Algebraic Equation , 1938 .
[7] Raghu Meka,et al. Anti-concentration for polynomials of Rademacher random variables and applications in complexity theory , 2015 .
[8] A. C. Berry. The accuracy of the Gaussian approximation to the sum of independent variates , 1941 .
[9] T. Tao,et al. From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices , 2008, 0810.2994.
[10] P. Erdos,et al. On the evolution of random graphs , 1984 .
[11] P. Erdos. Extremal Problems in Number Theory , 2001 .
[12] V. Vu. Random Discrete Matrices , 2006 .
[13] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[14] J. Gates. Introduction to Probability and its Applications , 1992 .
[15] Kevin P. Costello,et al. Random symmetric matrices are almost surely nonsingular , 2005, math/0505156.
[16] András Sárközy,et al. Über ein Problem von Erdös und Moser , 1965 .
[17] Raghu Meka,et al. Anti-concentration for Polynomials of Independent Random Variables , 2016, Theory Comput..
[18] Zoltán Füredi,et al. Sphere coverings of the hypercube with incomparable centers , 1990, Discret. Math..
[19] G. Halász. Estimates for the concentration function of combinatorial number theory and probability , 1977 .
[20] Van H. Vu. Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2009 .
[21] B. Bollobás. Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability , 1986 .
[22] Béla Bollobás,et al. Random Graphs , 1985 .
[23] Terence Tao,et al. A sharp inverse Littlewood‐Offord theorem , 2009, Random Struct. Algorithms.
[24] Jean Bourgain,et al. On the singularity probability of discrete random matrices , 2009, 0905.0461.