Come and Be Served: Parallel Decoding for COTS RFID Tags

Current commodity RFID systems incur high communication overhead due to severe tag-to-tag collisions. Although some recent works have been proposed to support parallel decoding for concurrent tag transmissions, they require accurate channel measurements, tight tag synchronization, or modifications to standard RFID tag operations. In this paper, we present BiGroup, a novel RFID communication paradigm that allows the reader to decode the collision from multiple COTS (commodity-off-the-shelf) RFID tags in one communication round. In BiGroup, COTS tags can directly join ongoing communication sessions and get decoded in parallel. The collision resolution intelligence is solely put at the reader side. To this end, BiGroup examines the tag collisions at RFID physical layer from constellation domain as well as time domain, exploits the under-utilized channel capacity due to low tag transmission rate, and leverages tag diversities. We implement BiGroup with USRP N210 software radio that is able to read and decode multiple concurrent transmissions from COTS passive tags. Our experimental study gives encouraging results that BiGroup greatly improves RFID communication efficiency, i.e., 11× performance improvement compared to the alternative decoding scheme for COTS tags and 6× gain in time efficiency when applied to EPC C1G2 tag identification.

[1]  Yin Zhang,et al.  CRMA: collision-resistant multiple access , 2011, MobiCom.

[2]  Srdjan Capkun,et al.  Physical-layer identification of UHF RFID tags , 2010, MobiCom.

[3]  Ge Yan,et al.  A Novel RFID Anti-Collision Algorithm Based on SDMA , 2008, 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing.

[4]  Yunhao Liu,et al.  OTrack: Order tracking for luggage in mobile RFID systems , 2013, 2013 Proceedings IEEE INFOCOM.

[5]  C. Mutti,et al.  CDMA-based RFID Systems in Dense Scenarios: Concepts and Challenges , 2008, 2008 IEEE International Conference on RFID.

[6]  Liang He,et al.  A Parallel Identification Protocol for RFID systems , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[7]  Junyu Wang,et al.  Separation of multiple passive RFID signals using Software Defined Radio , 2009, 2009 IEEE International Conference on RFID.

[8]  Hsin-Chin Liu,et al.  Performance analysis of multi-carrier RFID systems , 2009, 2009 International Symposium on Performance Evaluation of Computer & Telecommunication Systems.

[9]  Sung Hyun Kim,et al.  An Efficient Tree-Based Tag Anti-Collision Protocol for RFID Systems , 2007, IEEE Communications Letters.

[10]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[11]  Lei Yang,et al.  Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices , 2014, MobiCom.

[12]  George N. Karystinos,et al.  Single-Antenna Coherent Detection of Collided FM0 RFID Signals , 2012, IEEE Transactions on Communications.

[13]  Dina Katabi,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2014, S3 '14.

[14]  Vincent Liu,et al.  Enabling instantaneous feedback with full-duplex backscatter , 2014, MobiCom.

[15]  Yuanqing Zheng,et al.  Fast tag searching protocol for large-scale RFID systems , 2011, ICNP 2011.

[16]  Pan Hu,et al.  EkhoNet: High-Speed Ultra Low-Power Backscatter for Next Generation Sensors , 2015, GETMBL.

[17]  Angli Liu,et al.  Turbocharging ambient backscatter communication , 2014, SIGCOMM.

[18]  David Wetherall,et al.  Dewdrop: An Energy-Aware Runtime for Computational RFID , 2011, NSDI.

[19]  Ben Y. Zhao,et al.  Mirror mirror on the ceiling: flexible wireless links for data centers , 2012, CCRV.

[20]  S. J. Thomas,et al.  A 96 Mbit/sec, 15.5 pJ/bit 16-QAM modulator for UHF backscatter communication , 2012, 2012 IEEE International Conference on RFID (RFID).

[21]  Joshua R. Smith,et al.  Wi-fi backscatter , 2014, SIGCOMM 2015.

[22]  Piotr Indyk,et al.  Efficient and reliable low-power backscatter networks , 2012, CCRV.

[23]  Deepak Ganesan,et al.  BLINK: a high throughput link layer for backscatter communication , 2012, MobiSys '12.

[24]  Dina Katabi,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2014, S3@MobiCom.

[25]  Jie Yang,et al.  E-eyes: device-free location-oriented activity identification using fine-grained WiFi signatures , 2014, MobiCom.

[26]  Sneha Kumar Kasera,et al.  On Fast and Accurate Detection of Unauthorized Wireless Access Points Using Clock Skews , 2010, IEEE Transactions on Mobile Computing.

[27]  Koushik Kar,et al.  Load Balancing in Large-Scale RFID Systems , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[28]  Kaishun Wu,et al.  DDC: A Novel Scheme to Directly Decode the Collisions in UHF RFID Systems , 2012, IEEE Transactions on Parallel and Distributed Systems.

[29]  Colby Boyer,et al.  Coded QAM Backscatter Modulation for RFID , 2012, IEEE Transactions on Communications.

[30]  Kang G. Shin,et al.  E-MiLi: Energy-Minimizing Idle Listening in Wireless Networks , 2011, IEEE Transactions on Mobile Computing.

[31]  Mo Li,et al.  PET: Probabilistic Estimating Tree for Large-Scale RFID Estimation , 2011, IEEE Transactions on Mobile Computing.

[32]  Robert Langwieser,et al.  RFID Reader Receivers for Physical Layer Collision Recovery , 2010, IEEE Trans. Commun..

[33]  David Wetherall,et al.  Recognizing daily activities with RFID-based sensors , 2009, UbiComp.

[34]  Pan Hu,et al.  Leveraging interleaved signal edges for concurrent backscatter , 2014, MOCO.

[35]  Jue Wang,et al.  Dude, where's my card?: RFID positioning that works with multipath and non-line of sight , 2013, SIGCOMM.

[36]  David C. Yen,et al.  Taxonomy and survey of RFID anti-collision protocols , 2006, Comput. Commun..

[37]  Sachin Katti,et al.  Strider: automatic rate adaptation and collision handling , 2011, SIGCOMM.

[38]  Yin Zhang,et al.  Exploiting temporal stability and low-rank structure for localization in mobile networks , 2010, MobiCom.

[39]  Yunhao Liu,et al.  Relative Localization of RFID Tags using Spatial-Temporal Phase Profiling , 2015, NSDI.

[40]  Daniel W. Engels,et al.  Extracting information from tag collisions , 2009, 2009 IEEE International Conference on RFID.

[41]  Anna Scaglione,et al.  Multipacket Reception of Passive UHF RFID Tags: A Communication Theoretic Approach , 2011, IEEE Transactions on Signal Processing.

[42]  David Wetherall,et al.  Ambient backscatter: wireless communication out of thin air , 2013, SIGCOMM.