A Levenberg-Marquardt method for solving semi-symmetric tensor equations

Abstract In this paper, we propose a Levenberg–Marquardt (LM) method for solving tensor equations with semi-symmetric coefficient tensor and prove its global convergence and local quadratic convergence under the local error bound condition, which is weaker than non-singularity. As application, we solve H-eigenvalue of real semi-symmetric tensor by the LM method. At last, some numerical examples are provided to illustrate the efficiency and validity of these methods proposed.

[1]  Tan Zhang,et al.  A survey on the spectral theory of nonnegative tensors , 2013, Numer. Linear Algebra Appl..

[2]  Ya-Xiang Yuan,et al.  On the Quadratic Convergence of the Levenberg-Marquardt Method without Nonsingularity Assumption , 2005, Computing.

[3]  F. Drexler Eine Methode zur berechnung sämtlicher Lösungen von Polynomgleichungssystemen , 1977 .

[4]  M. Ng,et al.  Solving sparse non-negative tensor equations: algorithms and applications , 2015 .

[5]  L. Qi,et al.  Finding the Spectral Radius of a Nonnegative Tensor , 2011, 1111.2138.

[6]  Dong-Hui Li,et al.  Splitting methods for tensor equations , 2017, Numer. Linear Algebra Appl..

[7]  Yi-min Wei,et al.  ℋ-tensors and nonsingular ℋ-tensors , 2016 .

[8]  Liqun Qi,et al.  M-Tensors and Some Applications , 2014, SIAM J. Matrix Anal. Appl..

[9]  L. Qi,et al.  M-tensors and nonsingular M-tensors , 2013, 1307.7333.

[10]  N. Bose,et al.  General procedure for multivariable polynomial positivity test with control applications , 1976 .

[11]  Wei,et al.  H-tensors and nonsingular H-tensors , 2016 .

[12]  Brett W. Bader,et al.  The TOPHITS Model for Higher-Order Web Link Analysis∗ , 2006 .

[13]  M. Fukushima,et al.  On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .

[14]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[15]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[16]  Kung-Ching Chang,et al.  Perron-Frobenius theorem for nonnegative tensors , 2008 .

[17]  C. B. García,et al.  Finding all solutions to polynomial systems and other systems of equations , 1979, Math. Program..

[18]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[19]  Jiawei Han,et al.  Tensor space model for document analysis , 2006, SIGIR.

[20]  L. Qi,et al.  Strictly nonnegative tensors and nonnegative tensor partition , 2011, Science China Mathematics.

[21]  Yiju Wang,et al.  Criteria for strong H-tensors , 2016 .

[22]  Tien Yien Li,et al.  Numerical solution of multivariate polynomial systems by homotopy continuation methods , 1997, Acta Numerica.

[23]  L. Qi Eigenvalues and invariants of tensors , 2007 .

[24]  Liqun Qi,et al.  Programmable criteria for strong ℋ$\mathcal {H}$-tensors , 2016, Numerical Algorithms.

[25]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[26]  Qingzhi Yang,et al.  Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..

[27]  Yimin Wei,et al.  Solving Multi-linear Systems with $$\mathcal {M}$$M-Tensors , 2016, J. Sci. Comput..

[28]  Jiawang Nie,et al.  Discriminants and nonnegative polynomials , 2010, J. Symb. Comput..

[29]  Grigoriy Blekherman,et al.  Nonnegative Polynomials and Sums of Squares , 2010, 1010.3465.

[30]  Lixing Han,et al.  A homotopy method for solving multilinear systems with M-tensors , 2017, Appl. Math. Lett..

[31]  L. Qi,et al.  Positive Definiteness and Semi-Definiteness of Even Order Symmetric Cauchy Tensors , 2014, 1405.6363.

[32]  Yan Zhu,et al.  Criterions for the positive definiteness of real supersymmetric tensors , 2014, J. Comput. Appl. Math..

[33]  Zheng Chen,et al.  Text representation: from vector to tensor , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[34]  Jinyan Fan,et al.  A note on the Levenberg-Marquardt parameter , 2009, Appl. Math. Comput..

[35]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[36]  Yimin Wei,et al.  Tensor logarithmic norm and its applications , 2016, Numer. Linear Algebra Appl..

[37]  Liqun Qi,et al.  D-eigenvalues of diffusion kurtosis tensors , 2008 .

[38]  Yiju Wang,et al.  An H-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms , 2016, J. Comput. Appl. Math..

[39]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[40]  A. Berman,et al.  Some properties of strong H-tensors and general H-tensors , 2015 .

[41]  Zheng-Hai Huang,et al.  Formulating an n-person noncooperative game as a tensor complementarity problem , 2016, Comput. Optim. Appl..