Development of an innovative interfacial layer adapted to La2BO4±δ (B: Ni, Mn, Co) IT-SOC oxygen electrodes

[1]  N. Mushtaq,et al.  Tuning ORR electrocatalytic functionalities in CGFO-GDC composite cathode for low-temperature solid oxide fuel cells , 2022, Ceramics International.

[2]  N. Mushtaq,et al.  Enhanced ORR catalytic activity of rare earth-doped Gd oxide ions in a CoFe2O4 cathode for low-temperature solid oxide fuel cells (LT-SOFCs) , 2022, Ceramics International.

[3]  Ebru Kuyumcu Savan,et al.  A2BO4±δ as New Materials for Electrocatalytic Detection of Paracetamol and Diclofenac Drugs , 2022, Electrocatalysis.

[4]  L. Bi,et al.  Enhancing the performance of traditional La2NiO4+x cathode for proton-conducting solid oxide fuel cells with Zn-doping , 2022, Ceramics International.

[5]  H. Mohebbi,et al.  Controlling Yttria-stabilized zirconia/gadolinia-doped ceria interdiffusion layer in the solid oxide fuel cell electrolyte via flash sintering method , 2021, Ionics.

[6]  Zhipeng Gao,et al.  Enabled fast cathode kinetics for intermediate-temperature solid oxide fuel cell with improved CO2 poisoning robustness: La2NiO4 surfaced-modified SrCo0.8Nb0.1Ta0.1O3-δ composite , 2021 .

[7]  H. Wiggers,et al.  Enhanced heterogeneous activation of peroxymonosulfate by Ruddlesden-Popper-type La2CoO4+δ nanoparticles for bisphenol A degradation , 2021, Chemical Engineering Journal.

[8]  K. Yoon,et al.  Solid oxide fuel cells with zirconia/ceria bilayer electrolytes via roll calendering process , 2020 .

[9]  H. Yoon,et al.  Interface engineering of yttrium stabilized zirconia/gadolinium doped ceria bi-layer electrolyte solid oxide fuel cell for boosting electrochemical performance , 2019, Journal of Power Sources.

[10]  Yunhui Huang,et al.  Intrinsic Effects of Ruddlesden‐Popper‐Based Bifunctional Catalysts for High‐Temperature Oxygen Reduction and Evolution , 2019, Advanced Energy Materials.

[11]  S. Fourcade,et al.  Manufacturing and testing of a metal supported Ni-YSZ/YSZ/La2NiO4 IT-SOFC synthesized by physical surface deposition processes , 2017 .

[12]  Y. Sakka,et al.  Electrophoretic fabrication of a-b plane oriented La2NiO4 cathode onto electrolyte in strong magnetic field for low-temperature operating solid oxide fuel cell , 2016 .

[13]  J. Bassat,et al.  Influence of Crystal Orientation and Annealing on the Oxygen Diffusion and Surface Exchange of La2NiO4+δ , 2016 .

[14]  J. Bassat,et al.  Overstoichiometric oxides Ln2NiO4+δ (Ln = La, Pr or Nd) as oxygen anodic electrodes for solid oxide electrolysis application , 2015 .

[15]  J. Bassat,et al.  La2 − xPrxNiO4 + δ as suitable cathodes for metal supported SOFCs , 2015 .

[16]  Lina Wang,et al.  Oxygen reduction reaction activity of LaMn1-xCoxO3-graphene nanocomposite for zinc-air battery , 2015 .

[17]  Sea-Fue Wang,et al.  Characteristics of electrolyte supported micro-tubular solid oxide fuel cells with GDC-ScSZ bilayer electrolyte , 2014 .

[18]  Yazhou Wang,et al.  Morphologically controlled synthesis of porous spherical and cubic LaMnO3 with high activity for the catalytic removal of toluene. , 2014, ACS applied materials & interfaces.

[19]  M. Langell,et al.  Passivation of the La2NiMnO6 double perovskite to hydroxylation by excess nickel, and the fate of the hydroxylated surface upon heating , 2014 .

[20]  S. Bhoga,et al.  An investigation on strontium doped Sm2NiO4+δ cathode for intermediate temperature solid oxide fuel cells , 2014 .

[21]  S. Skinner,et al.  Functionally graded composite LaNiO and LaNiO solid oxide fuel cell cathodes , 2014 .

[22]  J. Bassat,et al.  Anisotropic Oxygen Diffusion Properties in Pr2NiO4+δ and Nd2NiO4+δ Single Crystals , 2013 .

[23]  S. Fourcade,et al.  Comparative study of electrochemical properties of mixed conducting Ln2NiO4 + δ (Ln = La, Pr and Nd) and La0.6Sr0.4Fe0.8Co0.2O3 − δ as SOFC cathodes associated to Ce0.9Gd0.1O2 − δ, La0.8Sr0.2Ga0.8Mg0.2O3 − δ and La9Sr1Si6O26.5 electrolytes , 2013 .

[24]  A. Giroir‐Fendler,et al.  The effect of A-site substitution by Sr, Mg and Ce on the catalytic performance of LaMnO3 catalysts for the oxidation of vinyl chloride emission , 2013 .

[25]  Sea-Fue Wang,et al.  Properties and Performance of La2NiO4+δ-LaNiO3 Composite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells , 2013 .

[26]  M. Cassir,et al.  La1.98Ni04±δ, a new cathode material for solid oxide fuel cell: Impedance spectroscopy study and compatibility with gadolinia-doped ceria and yttria-stabilized zirconia electrolytes , 2012 .

[27]  Seung-Bin Park,et al.  Co-doping schemes to enhance H2 evolution under visible light irradiation over SrTiO3:Ni/M (M = La or Ta) prepared by spray pyrolysis , 2012 .

[28]  H Zhao,et al.  Electrochemical performance of La2Cu1−xCoxO4 cathode materials for intermediate-temperature SOFCs , 2012 .

[29]  L. Mogni,et al.  Thermal stability of Ln2NiO4+δ (Ln: La, Pr, Nd) and their chemical compatibility with YSZ and CGO solid electrolytes , 2011 .

[30]  A. Manthiram,et al.  High power density thin film SOFCs with YSZ/GDC bilayer electrolyte , 2011 .

[31]  Lihua Lu,et al.  Electrochemical performance of La2NiO4+δ–La0.6Sr0.4Co0.2Fe0.8O3−δ composite cathodes for intermediate temperature solid oxide fuel cells , 2010 .

[32]  S. Fourcade,et al.  Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells , 2010 .

[33]  M. Cassir,et al.  Synthesis, structural analysis and electrochemical performance of low-copper content La2Ni1−xCuxO4+δ materials as new cathodes for solid oxide fuel cells , 2009 .

[34]  H Zhao,et al.  New cathode materials for ITSOFC: Phase stability, oxygen exchange and cathode properties of La2 − xNiO4 + δ , 2008 .

[35]  J. Alonso,et al.  Oxygen Excess in La2CoO4+δ : A Neutron Diffraction Study , 2008 .

[36]  Sun Liping,et al.  La substituted Sr2MnO4 as a possible cathode material in SOFC , 2008 .

[37]  A. Aguadero,et al.  Optimization of the interface polarization of the La2NiO4-based cathode working with the Ce1–xSmxO2–δ electrolyte system , 2008 .

[38]  J. Alonso,et al.  A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy , 2007 .

[39]  V. Osinniy,et al.  Investigation of epitaxial LaNiO3−x thin films by high-energy XPS , 2006 .

[40]  M. Cassir,et al.  Electrical properties of thin bilayered YSZ/GDC SOFC electrolyte elaborated by sputtering , 2006 .

[41]  U. Guth,et al.  A2−αAα′BO4-type oxides as cathode materials for IT-SOFCs (A = Pr, Sm; A′ = Sr; B = Fe, Co) , 2006 .

[42]  A. Revcolevschi,et al.  Interstitial and apical oxygen order–disorder in La2CoO4+δ observed by single-crystal neutron and X-ray diffraction , 2004 .

[43]  F. Ansart,et al.  Elaboration and characterization of La2NiO4+δ powders and thin films via a modified sol–gel process , 2004 .

[44]  J. Bassat,et al.  Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides , 2003 .

[45]  J. Fierro,et al.  Role of bulk and surface structures of La1−xSrxNiO3 perovskite-type oxides in methane combustion , 2001 .

[46]  J. Kilner,et al.  Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ , 2000 .

[47]  K. Eguchi,et al.  Process of solid state reaction between doped ceria and zirconia , 2000 .

[48]  N. Sammes,et al.  The chemical reaction between ceria and fully stabilised zirconia , 1999 .

[49]  P. Rudolf,et al.  Room temperature topotactic oxidation of lanthanum cobalt oxide La2CoO4.0 , 1998 .

[50]  I. Brown Modelling the structures of La2NiO4 , 1992 .

[51]  J. Fierro STRUCTURE AND COMPOSITION OF PEROVSKITE SURFACE IN RELATION TO ADSORPTION AND CATALYTIC PROPERTIES , 1990 .

[52]  Peter Lund,et al.  A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: materials and technology , 2021 .

[53]  K. Lee,et al.  Effect of lanthanide (Ln=La, Nd, and Pr) doping on electrochemical performance of Ln2NiO4+δ−YSZ composite cathodes for solid oxide fuel cells , 2021 .

[54]  M. Cassir,et al.  Ceria-based electrolytes with high surface area and improved conductivity for intermediate temperature solid oxide fuel cells , 2016, Journal of Materials Science.

[55]  S. Wilkins,et al.  Absence of Ni on the outer surface of Sr doped La2NiO4 single crystals , 2014 .

[56]  J. Bassat,et al.  Oxygen reduction on porous Ln2NiO4+δ electrodes , 2005 .

[57]  J. Kilner,et al.  Oxygen migration in La2NiO4 + δ , 2000 .

[58]  J. Fierro,et al.  Non-stoichiometric surface behaviour of LaMO3 oxides as evidenced by XPS , 1987 .