Selecting distances in arrangements of hyperplanes spanned by points

Abstract In this paper we consider a problem of distance selection in the arrangement of hyperplanes induced by n given points. Given a set of n points in d -dimensional space and a number k , 1⩽k⩽ n d , determine the hyperplane that is spanned by d points and at distance ranked by k from the origin. For the planar case we present an O( n log 2 n ) runtime algorithm using parametric search partly different from the usual approach [N. Megiddo, J. ACM 30 (1983) 852]. We establish a connection between this problem in 3-d and the well-known 3SUM problem using an auxiliary problem of counting the number of vertices in the arrangement of n planes that lie between two sheets of a hyperboloid. We show that the 3-d problem is almost 3SUM-hard and solve it by an O( n 2 log 2 n ) runtime algorithm. We generalize these results to the d -dimensional ( d ⩾4) space and consider also a problem of enumerating distances.

[1]  E. Szemerédi,et al.  O(n LOG n) SORTING NETWORK. , 1983 .

[2]  Leonidas J. Guibas,et al.  Data Structures for Mobile Data , 1997, J. Algorithms.

[3]  Jirí Matousek,et al.  Randomized Optimal Algorithm for Slope Selection , 1991, Inf. Process. Lett..

[4]  Leonidas J. Guibas,et al.  Data structures for mobile data , 1997, SODA '97.

[5]  R. Seidel,et al.  Lower bounds for fundamental geometric problems , 1996 .

[6]  Michael T. Goodrich Geometric partitioning made easier, even in parallel , 1993, SCG '93.

[7]  Prosenjit Gupta,et al.  Algorithms for some intersection searching problems involving curved objects , 1993 .

[8]  Leonidas J. Guibas,et al.  Kinetic Data Structures , 2004, Handbook of Data Structures and Applications.

[9]  Micha Sharir,et al.  Selecting distances in the plane , 1990, SCG '90.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[12]  E. Szemerédi,et al.  Sorting inc logn parallel steps , 1983 .

[13]  Timothy M. Chan On enumerating and selecting distances , 1998, SCG '98.

[14]  David M. Mount,et al.  A randomized algorithm for slope selection , 1992, Int. J. Comput. Geom. Appl..

[15]  Bernard Chazelle,et al.  Optimal Slope Selection Via Cuttings , 1994, CCCG.

[16]  Micha Sharir,et al.  Optimal Slope Selection Via Expanders , 1993, CCCG.

[17]  Richard Cokt Slowing Down Sorting Networks to Obtain Faster Sorting Algorithms , 1984 .

[18]  Micha Sharir,et al.  Planar geometric location problems , 2005, Algorithmica.

[19]  Micha Sharir,et al.  Computing the Smallest K-enclosing Circle and Related Problems , 1994, Comput. Geom..

[20]  Jeff Erickson,et al.  On the relative complexities of some geometric problems , 1995, CCCG.

[21]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[22]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[23]  Endre Szemerédi,et al.  An Optimal-Time Algorithm for Slope Selection , 1989, SIAM J. Comput..

[24]  David M. Mount,et al.  Efficient Algorithms for Robust Circular Arc Estimators , 1993, CCCG.

[25]  David M. Mount,et al.  Efficient randomized algorithms for robust estimation of circular arcs and aligned ellipses , 2001, Comput. Geom..