Anisotropic Meshes and Stabilization Parameter Design of Linear SUPG Method for 2D Convection-Dominated Convection–Diffusion Equations
暂无分享,去创建一个
Hehu Xie | Xiaobo Yin | Yana Di | Hehu Xie | Yana Di | Xiaobo Yin
[1] T. Hughes,et al. The Galerkin/least-squares method for advective-diffusive equations , 1988 .
[2] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[3] Miguel Cervera,et al. The intrinsic time for the streamline upwind/Petrov-Galerkin formulation using quadratic elements , 1992 .
[4] Alessandro Russo,et al. CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .
[5] Volker John,et al. On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review , 2007 .
[6] Simona Perotto,et al. Stabilized Finite Elements on Anisotropic Meshes: A Priori Error Estimates for the Advection-Diffusion and the Stokes Problems , 2003, SIAM J. Numer. Anal..
[7] Long Chen,et al. Numerical Studies of Adaptive Finite Element Methods for Two Dimensional Convection-Dominated Problems , 2010, J. Sci. Comput..
[8] Yuri V. Vassilevski,et al. Minimization of gradient errors of piecewise linear interpolation on simplicial meshes , 2010 .
[9] Guanghui Hu,et al. Moving finite element simulations for reaction-diffusion systems , 2012 .
[10] Hehu Xie,et al. Metric tensors for the interpolation error and its gradient in Lp norm , 2012, J. Comput. Phys..
[11] Thomas J. R. Hughes,et al. A Petrov-Galerkin finite element method for convection-dominated flows: An accurate upwinding technique for satisfying the maximum principle☆ , 1985 .
[12] Pavel B. Bochev,et al. A parameter-free stabilized finite element method for scalar advection-diffusion problems , 2013 .
[13] Endre Süli,et al. The Residual-Free-Bubble Finite Element Method on Anisotropic Partitions , 2007, SIAM J. Numer. Anal..
[14] Volker John,et al. A numerical study of a posteriori error estimators for convection–diffusion equations , 2000 .
[15] Long Chen,et al. Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..
[16] Gunar Matthies,et al. Local projection type stabilization applied to inf–sup stable discretizations of the Oseen problem , 2015 .
[17] Gunar Matthies,et al. A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .
[18] R. Verfürth,et al. Robust A Posteriori Error Estimates for Stabilized Finite Element Methods , 2014, 1402.5892.
[19] Sanjay Mittal,et al. On the performance of high aspect ratio elements for incompressible flows , 2000 .
[20] Roland Becker,et al. A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .
[21] JohnM . Miller,et al. Robust Computational Techniques for Boundary Layers , 2000 .
[22] L. Formaggia,et al. Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .
[23] Weizhang Huang,et al. Metric tensors for anisotropic mesh generation , 2005 .
[24] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[25] T. Apel,et al. Anisotropic mesh refinement in stabilized Galerkin methods , 1996 .
[26] Ramon Codina,et al. On the stabilization parameter in the subgrid scale approximation of scalar convection–diffusion–reaction equations on distorted meshes , 2010 .
[27] Ricardo H. Nochetto,et al. Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.
[28] Pingwen Zhang,et al. An adaptive mesh redistribution method for nonlinear Hamilton--Jacobi equations in two-and three-dimensions , 2003 .
[29] Alexandre L. Madureira,et al. Element diameter free stability parameters for stabilized methods applied to fluids , 1993 .
[30] Tayfun E. Tezduyar,et al. Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations , 1986 .
[31] Martin Stynes,et al. Steady-state convection-diffusion problems , 2005, Acta Numerica.
[32] T. Hughes,et al. Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .
[33] S. Mittal,et al. Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .
[34] Marco Picasso,et al. An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..
[35] Frédéric Alauzet,et al. Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error , 2011, SIAM J. Numer. Anal..
[36] Thomas J. R. Hughes,et al. Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations†‡ , 1987 .
[37] Lili Ju,et al. Adaptive Anisotropic Meshing For Steady Convection-Dominated Problems , 2009 .
[38] Thierry Coupez,et al. On the stabilized finite element method for steady convection-dominated problems with anisotropic mesh adaptation , 2014, Appl. Math. Comput..
[39] Alessandro Russo,et al. Further considerations on residual-free bubbles for advective - diffusive equations , 1998 .
[40] Pingwen Zhang,et al. Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .
[41] Pavel B. Bochev,et al. Formulation and Analysis of a Parameter-Free Stabilized Finite Element Method , 2015, SIAM J. Numer. Anal..
[42] M. Stynes,et al. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .
[43] Torsten Linß. Anisotropic meshes and streamline-diffusion stabilization for convection-diffusion problems , 2005 .