Anisotropic Meshes and Stabilization Parameter Design of Linear SUPG Method for 2D Convection-Dominated Convection–Diffusion Equations

We propose a numerical strategy to generate a sequence of anisotropic meshes and select appropriate stabilization parameters simultaneously for linear SUPG method solving two dimensional convection-dominated convection–diffusion equations. Since the discretization error in a suitable norm can be bounded by the sum of interpolation error and its variants in different norms, we replace them by some terms which contain the Hessian matrix of the true solution, convective field, and the geometric properties such as directed edges and the area of triangles. Based on this observation, the shape, size and equidistribution requirements are used to derive corresponding metric tensor and stabilization parameters. Numerical results are provided to validate the stability and efficiency of the proposed numerical strategy.

[1]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[2]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[3]  Miguel Cervera,et al.  The intrinsic time for the streamline upwind/Petrov-Galerkin formulation using quadratic elements , 1992 .

[4]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[5]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review , 2007 .

[6]  Simona Perotto,et al.  Stabilized Finite Elements on Anisotropic Meshes: A Priori Error Estimates for the Advection-Diffusion and the Stokes Problems , 2003, SIAM J. Numer. Anal..

[7]  Long Chen,et al.  Numerical Studies of Adaptive Finite Element Methods for Two Dimensional Convection-Dominated Problems , 2010, J. Sci. Comput..

[8]  Yuri V. Vassilevski,et al.  Minimization of gradient errors of piecewise linear interpolation on simplicial meshes , 2010 .

[9]  Guanghui Hu,et al.  Moving finite element simulations for reaction-diffusion systems , 2012 .

[10]  Hehu Xie,et al.  Metric tensors for the interpolation error and its gradient in Lp norm , 2012, J. Comput. Phys..

[11]  Thomas J. R. Hughes,et al.  A Petrov-Galerkin finite element method for convection-dominated flows: An accurate upwinding technique for satisfying the maximum principle☆ , 1985 .

[12]  Pavel B. Bochev,et al.  A parameter-free stabilized finite element method for scalar advection-diffusion problems , 2013 .

[13]  Endre Süli,et al.  The Residual-Free-Bubble Finite Element Method on Anisotropic Partitions , 2007, SIAM J. Numer. Anal..

[14]  Volker John,et al.  A numerical study of a posteriori error estimators for convection–diffusion equations , 2000 .

[15]  Long Chen,et al.  Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..

[16]  Gunar Matthies,et al.  Local projection type stabilization applied to inf–sup stable discretizations of the Oseen problem , 2015 .

[17]  Gunar Matthies,et al.  A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .

[18]  R. Verfürth,et al.  Robust A Posteriori Error Estimates for Stabilized Finite Element Methods , 2014, 1402.5892.

[19]  Sanjay Mittal,et al.  On the performance of high aspect ratio elements for incompressible flows , 2000 .

[20]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[21]  JohnM . Miller,et al.  Robust Computational Techniques for Boundary Layers , 2000 .

[22]  L. Formaggia,et al.  Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .

[23]  Weizhang Huang,et al.  Metric tensors for anisotropic mesh generation , 2005 .

[24]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[25]  T. Apel,et al.  Anisotropic mesh refinement in stabilized Galerkin methods , 1996 .

[26]  Ramon Codina,et al.  On the stabilization parameter in the subgrid scale approximation of scalar convection–diffusion–reaction equations on distorted meshes , 2010 .

[27]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.

[28]  Pingwen Zhang,et al.  An adaptive mesh redistribution method for nonlinear Hamilton--Jacobi equations in two-and three-dimensions , 2003 .

[29]  Alexandre L. Madureira,et al.  Element diameter free stability parameters for stabilized methods applied to fluids , 1993 .

[30]  Tayfun E. Tezduyar,et al.  Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations , 1986 .

[31]  Martin Stynes,et al.  Steady-state convection-diffusion problems , 2005, Acta Numerica.

[32]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[33]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[34]  Marco Picasso,et al.  An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..

[35]  Frédéric Alauzet,et al.  Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error , 2011, SIAM J. Numer. Anal..

[36]  Thomas J. R. Hughes,et al.  Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations†‡ , 1987 .

[37]  Lili Ju,et al.  Adaptive Anisotropic Meshing For Steady Convection-Dominated Problems , 2009 .

[38]  Thierry Coupez,et al.  On the stabilized finite element method for steady convection-dominated problems with anisotropic mesh adaptation , 2014, Appl. Math. Comput..

[39]  Alessandro Russo,et al.  Further considerations on residual-free bubbles for advective - diffusive equations , 1998 .

[40]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .

[41]  Pavel B. Bochev,et al.  Formulation and Analysis of a Parameter-Free Stabilized Finite Element Method , 2015, SIAM J. Numer. Anal..

[42]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[43]  Torsten Linß Anisotropic meshes and streamline-diffusion stabilization for convection-diffusion problems , 2005 .