The quantum‐chemical study of small clusters of organic chromophores: Topological analysis and nonlinear optical properties

[1]  T. Hamada An ab Initio Molecular Orbital Study on Hyperpolarizabilities of an Interacting 2-Methyl-4-nitroaniline Molecular Pair: A Molecular Study on the Oriented-Gas Approximation , 1996 .

[2]  A. Datta,et al.  Dipole orientation effects on nonlinear optical properties of organic molecular aggregates , 2003 .

[3]  Paul L. A. Popelier,et al.  The electron pair , 1996 .

[4]  Larry R. Dalton,et al.  Nanoscale architectural control and macromolecular engineering of nonlinear optical dendrimers and polymers for electro-optics , 2004 .

[5]  Báder Principle of stationary action and the definition of a proper open system. , 1994, Physical review. B, Condensed matter.

[6]  V. Moliner,et al.  Intermolecular hydrogen bonding in NLO. Theoretical analysis of the nitroaniline and HF cases , 1998 .

[7]  S. J. Grabowski Ab Initio Calculations on Conventional and Unconventional Hydrogen BondsStudy of the Hydrogen Bond Strength , 2001 .

[8]  M. Balakina,et al.  The choice of basis set for calculations of linear and nonlinear optical properties of conjugated organic molecules in gas and in dielectric medium by the example of p-nitroaniline , 2007 .

[9]  H. Ågren,et al.  Solvent induced polarizabilities and hyperpolarizabilities of para‐nitroaniline studied by reaction field linear response theory , 1994 .

[10]  S. Batsanov On the additivity of van der Waals radii , 1998 .

[11]  B. Champagne,et al.  Simple Scheme To Evaluate Crystal Nonlinear Susceptibilities: Semiempirical AM1 Model Investigation of 3-Methyl-4-nitroaniline Crystal , 2001 .

[12]  M. Ratner,et al.  Self-Assembled Electrooptic Superlattices. A Theoretical Study of Multilayer Formation and Response Using Donor−Acceptor, Hydrogen-Bond Building Blocks , 2004 .

[13]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[14]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[15]  Uwe Koch,et al.  CHARACTERIZATION OF C-H-O HYDROGEN-BONDS ON THE BASIS OF THE CHARGE-DENSITY , 1995 .

[16]  M. Ziółkowski,et al.  Cooperativity in hydrogen-bonded interactions: ab initio and "atoms in molecules" analyses. , 2006, The journal of physical chemistry. A.

[17]  R. P. Bertram,et al.  Investigation of chromophore-chromophore interaction by electro-optic measurements, linear dichroism, x-ray scattering, and density-functional calculations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Structural origin of the enhanced electro-optic response of dendrimeric systems , 2003 .

[19]  Mark A. Ratner,et al.  Design of chromophoric molecular assemblies with large second-order optical nonlinearities. A theoretical analysis of the role of intermolecular interactions , 1992 .

[20]  M. Balakina,et al.  Solvent Effect on Geometry and Nonlinear Optical Response of Conjugated Organic Molecules , 2006 .

[21]  Jingdong Luo,et al.  Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses. , 2007, Journal of the American Chemical Society.

[22]  Antao Chen,et al.  The molecular and supramolecular engineering of polymeric electro-optic materials , 1999 .

[23]  Margaret C. Etter,et al.  Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials , 1987 .

[24]  Margaret C. Etter,et al.  Encoding and decoding hydrogen-bond patterns of organic compounds , 1990 .

[25]  Claudine Katan,et al.  Effects of dipolar interactions on linear and nonlinear optical properties of multichromophore assemblies: a case study. , 2006, Chemistry.

[26]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[27]  M. Balakina,et al.  Nonempirical calculations of nonlinear optical properties of p-nitroaniline in acetone: Comparison of supermolecule and semicontinuum approaches , 2007 .

[28]  Larry R. Dalton,et al.  Theory-inspired nano-engineering of photonic and electronic materials: Noncentrosymmetric charge-transfer electro-optic materials , 2007 .

[29]  W. Cheng,et al.  First principle treatments on site- and size-dependent supermolecular interactions and nonlinear optical properties of polymer of 2-methyl-4-nitroaniline , 2004 .

[30]  Peter Günter,et al.  Nonlinear Optical Effects and Materials , 2000 .

[31]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[32]  P. Jørgensen,et al.  Response Theory and Calculations of Molecular Hyperpolarizabilities , 1995 .

[33]  T. Yasukawa,et al.  An AM1 study of the effects of intermolecular interactions on hyperpolarizability of p-nitroanilines , 1990 .

[34]  I. Fragalà,et al.  Charge distribution and second-order nonlinear optical response of charged centrosymmetric chromophore aggregates. An ab initio electronic structure study of p-nitroaniline dimers , 1997 .

[35]  Jerzy Leszczynski,et al.  Nonlinear optical properties of highly conjugated push-pull porphyrin aggregates : Role of intermolecular interaction , 2006 .

[36]  R. Bader,et al.  Description of conjugation and hyperconjugation in terms of electron distributions , 1983 .

[37]  A. Datta,et al.  Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability. , 2006, Chemical Society reviews.

[38]  Bruce H. Robinson,et al.  Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials† , 2000 .

[39]  R. Bader,et al.  A topological theory of molecular structure , 1981 .

[40]  L. R. Dalton,et al.  Organic electro-optic materials , 2004 .

[41]  A. Bondi van der Waals Volumes and Radii , 1964 .

[42]  Ronald J. Gillespie,et al.  Chemical Bonding and Molecular Geometry: From Lewis to Electron Densities , 1972 .

[43]  P. Prasad,et al.  Nonlinear optical properties of p‐nitroaniline: An ab initio time‐dependent coupled perturbed Hartree–Fock study , 1991 .