Attosecond Control and Measurement: Lightwave Electronics

Electrons emit light, carry electric current, and bind atoms together to form molecules. Insight into and control of their atomic-scale motion are the key to understanding the functioning of biological systems, developing efficient sources of x-ray light, and speeding up electronics. Capturing and steering this electron motion require attosecond resolution and control, respectively (1 attosecond = 10–18 seconds). A recent revolution in technology has afforded these capabilities: Controlled light waves can steer electrons inside and around atoms, marking the birth of lightwave electronics. Isolated attosecond pulses, well reproduced and fully characterized, demonstrate the power of the new technology. Controlled few-cycle light waves and synchronized attosecond pulses constitute its key tools. We review the current state of lightwave electronics and highlight some future directions.

[1]  F. Légaré,et al.  Sub-laser-cycle electron pulses for probing molecular dynamics , 2002, Nature.

[2]  Thomas Pfeifer,et al.  Heterodyne mixing of laser fields for temporal gating of high-order harmonic generation. , 2006, Physical review letters.

[3]  S. Silvestri,et al.  Compression of high-energy laser pulses below 5 fs. , 1997, Optics letters.

[4]  Anders Persson,et al.  Amplitude and phase control of attosecond light pulses. , 2005, Physical review letters.

[5]  L. A. Lompré,et al.  Multiple-harmonic conversion of 1064 nm radiation in rare gases , 1988 .

[6]  V. Chiappinelli,et al.  Nicotinic acetylcholine receptors in separate brain regions exhibit different affinities for methyllycaconitine , 1996, Neuroscience.

[7]  J. Mauritsson,et al.  Attosecond pulse trains generated using two color laser fields , 2006 .

[8]  Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau , 2004 .

[9]  P. Corkum,et al.  Attosecond streak camera. , 2002, Physical review letters.

[10]  L'Huillier,et al.  Attosecond Pulse Trains Using High-Order Harmonics. , 1996, Physical review letters.

[11]  U. Heinzmann,et al.  Attosecond metrology , 2007, Nature.

[12]  A. Bandrauk,et al.  Attosecond localization of electrons in molecules , 2004 .

[13]  J. P. Marangos,et al.  Probing Proton Dynamics in Molecules on an Attosecond Time Scale , 2006, Science.

[14]  F. Quéré,et al.  Temporal characterization of attosecond XUV fields , 2005 .

[15]  M M Murnane,et al.  Attosecond time-scale intra-atomic phase matching of high harmonic generation. , 2001, Physical review letters.

[16]  E. Goulielmakis,et al.  Direct Measurement of Light Waves , 2004, Science.

[17]  P. Agostini,et al.  The physics of attosecond light pulses , 2004 .

[18]  P. Balcou,et al.  Observation of a Train of Attosecond Pulses from High Harmonic Generation , 2001, Science.

[19]  Ferenc Krausz,et al.  Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics , 2007 .

[20]  Paul Brumer,et al.  Principles of the Quantum Control of Molecular Processes , 2003 .

[21]  L. Poletto,et al.  Controlling attosecond electron dynamics by phase-stabilized polarization gating , 2006 .

[22]  P. Corkum,et al.  Measuring and controlling the birth of attosecond XUV pulses , 2006 .

[23]  T. Kanai,et al.  Quantum interference during high-order harmonic generation from aligned molecules , 2005, Nature.

[24]  Ryszard S. Romaniuk,et al.  Operation of a free-electron laser from the extreme ultraviolet to the water window , 2007 .

[25]  Balint Horvath,et al.  Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua , 2007 .

[26]  F. Krausz,et al.  Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. , 1994, Optics letters.

[27]  U. Heinzmann,et al.  Time-resolved atomic inner-shell spectroscopy , 2002, Nature.

[28]  P. Corkum,et al.  Plasma perspective on strong field multiphoton ionization. , 1993, Physical review letters.

[29]  Ahmed H. Zewail,et al.  Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond† , 2000 .

[30]  Rick Trebino,et al.  Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating , 1997 .

[31]  A. Verhoef,et al.  Control of Electron Localization in Molecular Dissociation , 2006, Science.

[32]  P. Johnsson,et al.  Attosecond electron wave packet interferometry , 2006 .

[33]  Ursula Keller,et al.  Strong field quantum path control using attosecond pulse trains. , 2004, Physical review letters.

[34]  Henry C. Kapteyn,et al.  High-Harmonic Generation of Attosecond Pulses in the ``Single-Cycle'' Regime , 1997 .

[35]  Ferenc Krausz,et al.  Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses , 2006 .

[36]  U. Kleineberg,et al.  Atomic transient recorder , 2004, Nature.

[37]  U. Kleineberg,et al.  Attosecond real-time observation of electron tunnelling in atoms , 2007, Nature.

[38]  K. Midorikawa,et al.  Generation of extreme ultraviolet continuum radiation driven by a sub-10-fs two-color field. , 2006, Optics express.

[39]  R. Holzwarth,et al.  Attosecond control of electronic processes by intense light fields , 2003, Nature.

[40]  A. Zholents,et al.  Proposal for intense attosecond radiation from an x-ray free-electron laser. , 2004, Physical review letters.

[41]  P. Tzallas,et al.  Direct observation of attosecond light bunching , 2003, Nature.

[42]  T. Kanai,et al.  Nonlinear optics in the extreme ultraviolet , 2004, Nature.

[43]  L. Poletto,et al.  Isolated Single-Cycle Attosecond Pulses , 2006, Science.

[44]  I. A. Walmsley,et al.  Self-referencing spectral interferometry for measuring ultrashort optical pulses , 1999 .