Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data
暂无分享,去创建一个
[1] Emmanuel Thanassoulis,et al. Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions , 1997, Ann. Oper. Res..
[2] Thomas M. Stoker. Empirical Approaches to the Problem, of Aggregation Over Individuals , 2011 .
[3] M. Farrell. The Measurement of Productive Efficiency , 1957 .
[4] R. Frisch. Necessary and Sufficient Conditions regarding the form of an Index Number Which Shall Meet Certain of Fisher's Tests , 1930 .
[5] Valentin Zelenyuk,et al. Input aggregation and technical efficiency , 2002 .
[6] Wassily W. Leontief. Die Bilanz der russischen Volkswirtschaft : eine methodologische Untersuchung , 1925 .
[7] Léopold Simar,et al. WHEN BIAS KILLS THE VARIANCE: CENTRAL LIMIT THEOREMS FOR DEA AND FDH EFFICIENCY SCORES , 2014, Econometric Theory.
[8] Agha Iqbal Ali,et al. Streamlined computation for data envelopment analysis , 1993 .
[9] Ron Kohavi,et al. Emerging trends in business analytics , 2002, CACM.
[10] L. Simar,et al. Linearly interpolated FDH efficiency score for nonconvex frontiers , 2006 .
[11] W. Cooper,et al. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software , 1999 .
[12] B. Park,et al. THE FDH ESTIMATOR FOR PRODUCTIVITY EFFICIENCY SCORES , 2000, Econometric Theory.
[13] Emmanuel Thanassoulis,et al. Applied data envelopment analysis , 1991 .
[14] L. R. Christensen,et al. THE ECONOMIC THEORY OF INDEX NUMBERS AND THE MEASUREMENT OF INPUT, OUTPUT, AND PRODUCTIVITY , 1982 .
[15] Loren W. Tauer. Input aggregation and computed technical efficiency , 2001 .
[16] A. Charnes,et al. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .
[17] J. Tind,et al. Convex Input and Output Projections of Nonconvex Production Possibility Sets , 2000 .
[18] Nicole Adler,et al. Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction , 2010, Eur. J. Oper. Res..
[19] A. C. Thomas,et al. Linear input aggregation bias in nonparametric technical efficiency measurement , 1994 .
[20] W. M. Gorman. Community Preference Fields , 1953 .
[21] Léopold Simar,et al. Central Limit Theorems for Aggregate Efficiency , 2018, Oper. Res..
[22] Paul W. Wilson,et al. Dimension reduction in nonparametric models of production , 2017, Eur. J. Oper. Res..
[23] Léopold Simar,et al. Central Limit Theorems for Conditional Efficiency Measures and Tests of the ‘Separability’ Condition in Non�?Parametric, Two�?Stage Models of Production , 2018 .
[24] L. R. Christensen,et al. MULTILATERAL COMPARISONS OF OUTPUT, INPUT, AND PRODUCTIVITY USING SUPERLATIVE INDEX NUMBERS* , 1982 .
[25] Joe Zhu,et al. Measuring performance of two-stage network structures by DEA: A review and future perspective , 2010 .
[26] O. H. Brownlee,et al. ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .
[27] R. Dyson,et al. Reducing Weight Flexibility in Data Envelopment Analysis , 1988 .
[28] W. Seitz. Productive Efficiency in the Steam-Electric Generating Industry , 1971, Journal of Political Economy.
[29] Léopold Simar,et al. Statistical Approaches for Non‐parametric Frontier Models: A Guided Tour , 2015 .
[30] W. E. Diewert,et al. Essays in The theory and measurement of consumer behaviour in honour of Sir Richard Stone : The economic theory of index numbers: a survey , 1981 .
[31] Chiang Kao,et al. Network data envelopment analysis: A review , 2014, Eur. J. Oper. Res..
[32] E. Mammen,et al. On estimation of monotone and concave frontier functions , 1999 .
[33] B. Balk. Decompositions of Fisher indexes , 2004 .
[34] A. Charnes,et al. Data Envelopment Analysis Theory, Methodology and Applications , 1995 .
[35] T. Ueda,et al. APPLICATION OF PRINCIPAL COMPONENT ANALYSIS FOR PARSIMONIOUS SUMMARIZATION OF DEA INPUTS AND/OR OUTPUTS , 1997 .
[36] N. Petersen. Data Envelopment Analysis on a Relaxed Set of Assumptions , 1990 .
[37] W. Härdle,et al. Applied Multivariate Statistical Analysis , 2003 .
[38] Bernard Marr,et al. Big Data: Using SMART Big Data, Analytics and Metrics To Make Better Decisions and Improve Performance , 2015 .
[39] W. Diewert. Fisher ideal output, input, and productivity indexes revisited , 1992 .
[40] Joe Zhu,et al. Within-group common benchmarking using DEA , 2017, Eur. J. Oper. Res..
[41] Rolf Färe,et al. The relative efficiency of Illinois electric utilities , 1983 .
[42] Veda C. Storey,et al. Business Intelligence and Analytics: From Big Data to Big Impact , 2012, MIS Q..
[43] Rajiv D. Banker,et al. Efficiency Analysis for Exogenously Fixed Inputs and Outputs , 1986, Oper. Res..
[44] Ali Emrouznejad,et al. Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years , 2008 .
[45] John Ruggiero,et al. Impact Assessment of Input Omission on Dea , 2005, Int. J. Inf. Technol. Decis. Mak..
[46] L. V. Kantorovich,et al. Mathematical Methods of Organizing and Planning Production , 1960 .
[47] Yao Chen,et al. DEANN: A healthcare analytic methodology of data envelopment analysis and artificial neural networks for the prediction of organ recipient functional status , 2016 .
[48] Richard S. Barr,et al. Parallel and hierarchical decomposition approaches for solving large-scale Data Envelopment Analysis models , 1997, Ann. Oper. Res..
[49] I. Fisher. The Best form of Index Number , 1921, Quarterly Publications of the American Statistical Association.
[50] W. Diewert,et al. A characterization of the Törnqvist price index , 2001 .
[51] I. Fisher,et al. The making of index numbers , 1967 .
[52] Subhash C. Ray,et al. Data Envelopment Analysis: Theory and Techniques for Economics and Operations Research , 2004 .
[53] George B. Dantzig,et al. Optimal Solution of a Dynamic Leontief Model with Substitution , 1955 .
[54] Rajiv D. Banker,et al. The Use of Categorical Variables in Data Envelopment Analysis , 1986 .
[55] S. Afriat. Efficiency Estimation of Production Function , 1972 .
[56] Dominique Deprins,et al. Measuring Labor-Efficiency in Post Offices , 2006 .
[57] Neil F. Doherty,et al. Operational research from Taylorism to Terabytes: A research agenda for the analytics age , 2015, Eur. J. Oper. Res..
[58] Seok-Oh Jeong,et al. ASYMPTOTIC DISTRIBUTION OF CONICAL-HULL ESTIMATORS OF DIRECTIONAL EDGES , 2010 .
[59] W. Diewert. A Note on Aggregation and Elasticities of Substitution , 1974 .
[60] R. Shephard. Cost and production functions , 1953 .
[61] W. Erwin Diewert,et al. The Measurement of Waste within the Production Sector of an Open Economy , 1983 .
[62] Ragnar Frisch,et al. Annual Survey of General Economic Theory: The Problem of Index Numbers , 1936 .
[63] Léopold Simar,et al. On estimation of monotone and convex boundaries , 1995 .
[64] R. R. Russell,et al. Technological Change, Technological Catch-up, and Capital Deepening: Relative Contributions to Growth and Convergence , 2002 .
[65] G. Debreu. The Coefficient of Resource Utilization , 1951 .
[66] W. Diewert. Aggregation Problems in the Measurement of Capital , 1980 .
[67] W. M. Gorman. SEPARABLE UTILITY AND AGGREGATION , 1959 .
[68] Walter Diewert,et al. Exact and superlative index numbers , 1976 .
[69] A. Konuş,et al. The Problem of the True Index of the Cost of Living , 1939 .
[70] L. Törnqvist. The Bank of Finland's consumption price index , 1936 .
[71] Rolf Färe,et al. Aggregation bias and its bounds in measuring technical efficiency , 2004 .
[72] G. Dantzig. Programming of Interdependent Activities: II Mathematical Model , 1949 .
[73] D. Primont,et al. Multi-Output Production and Duality: Theory and Applications , 1994 .
[74] P. W. Wilson,et al. Estimation and Inference in Nonparametric Frontier Models: Recent Developments and Perspectives , 2013 .
[75] A. Tsybakov,et al. Efficient Estimation of Monotone Boundaries , 1995 .
[76] Léopold Simar,et al. Testing Hypotheses in Nonparametric Models of Production , 2016 .
[77] Chia-Yen Lee,et al. LASSO variable selection in data envelopment analysis with small datasets , 2020 .
[78] Richard Blundell,et al. Heterogeneity and aggregation , 2005 .
[79] W. Diewert. Superlative Index Numbers and Consistency in Aggregation , 1978 .
[80] Abraham Charnes,et al. Measuring the efficiency of decision making units , 1978 .
[81] Boaz Golany,et al. Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe , 2001, Eur. J. Oper. Res..
[82] Bert M. Balk,et al. Price and Quantity Index Numbers: Models for Measuring Aggregate Change and Difference , 2012 .
[83] P. W. Wilson,et al. ASYMPTOTICS AND CONSISTENT BOOTSTRAPS FOR DEA ESTIMATORS IN NONPARAMETRIC FRONTIER MODELS , 2008, Econometric Theory.
[84] H. Theil,et al. Linear Aggregation of Economic Relations. , 1955 .
[85] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[86] F. Førsund,et al. On the Origins of Data Envelopment Analysis , 2000 .
[87] R. Färe,et al. Nonparametric Cost Approach to Scale Efficiency , 1985 .
[88] R. Färe,et al. Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries , 1994 .
[89] B. Balk,et al. Industrial Price, Quantity, and Productivity Indices: The Micro-Economic Theory and an Application , 1998 .
[90] W. Diewert. THE MEASUREMENT OF PRODUCTIVITY , 1992 .
[91] R. Banker. Maximum likelihood, consistency and data envelopment analysis: a statistical foundation , 1993 .
[92] B. Park,et al. A NOTE ON THE CONVERGENCE OF NONPARAMETRIC DEA ESTIMATORS FOR PRODUCTION EFFICIENCY SCORES , 1998, Econometric Theory.
[93] José H. Dulá,et al. A computational study of DEA with massive data sets , 2008, Comput. Oper. Res..
[94] Léopold Simar,et al. Advanced Robust and Nonparametric Methods in Efficiency Analysis: Methodology and Applications , 2007 .
[95] Peter Bogetoft,et al. DEA on relaxed convexity assumptions , 1996 .
[96] Lawrence M. Seiford,et al. Data envelopment analysis (DEA) - Thirty years on , 2009, Eur. J. Oper. Res..
[97] Jie Wu,et al. Efficiency evaluation based on data envelopment analysis in the big data context , 2017, Comput. Oper. Res..
[98] Cláudia S. Sarrico,et al. Pitfalls and protocols in DEA , 2001, Eur. J. Oper. Res..
[99] Walter Diewert,et al. An Application of the Shephard Duality Theorem: A Generalized Leontief Production Function , 1971, Journal of Political Economy.
[100] Joe Zhu,et al. Data envelopment analysis: Prior to choosing a model , 2014 .
[101] W. Seitz. The measurement of efficiency relative to a frontier production function. , 1970 .
[102] Mehdi Toloo,et al. Data envelopment analysis and big data , 2019, Eur. J. Oper. Res..