Microbes play an important role in the alteration of oceanic crust

[1]  J. McCrea On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale , 1950 .

[2]  H. Craig THE GEOCHEMISTRY OF THE STABLE CARBON ISOTOPES , 1953 .

[3]  H. Craig Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide , 1957 .

[4]  H. Craig Isotopic Variations in Meteoric Waters , 1961, Science.

[5]  E. Degens Biogeochemistry of Stable Carbon Isotopes , 1969 .

[6]  K. Porter,et al.  The use of DAPI for identifying and counting aquatic microflora1 , 1980 .

[7]  The isotopic composition of carbonate carbon from deep-sea basalts , 1982 .

[8]  I. B. Fridleifsson,et al.  Subglacial volcanics — on the control of magma chemistry on pillow dimensions , 1982 .

[9]  J. Honnorez,et al.  DSDP Hole 504B, the first reference section over 1 km through Layer 2 of the oceanic crust , 1982, Nature.

[10]  L. Dijkhuizen,et al.  Physiological responses to nutrient limitation. , 1983, Annual review of microbiology.

[11]  S. Hart,et al.  Alteration of basaltic glass: Mechanisms and significance for the oceanic crust-seawater budget , 1983 .

[12]  David J. Des Marais,et al.  Carbon and its isotopes in mid-oceanic basaltic glasses , 1984 .

[13]  B. Taylor Magmatic volatiles; isotopic variation of C, H, and S , 1986 .

[14]  J. Alt,et al.  Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry and evolution of seawater‐basalt interactions , 1986 .

[15]  R. V. Fisher,et al.  Biogenic grooving on glass shards , 1986 .

[16]  J. Alt,et al.  An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP hole 504B , 1986 .

[17]  T. Beveridge,et al.  Iron-silica crystallite nucleation by bacteria in a geothermal sediment , 1986, Nature.

[18]  T. Beveridge,et al.  Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment , 1987 .

[19]  A. Dubois,et al.  Biogenic etching of microfractures in amorphous and crystalline silicates , 1987, Nature.

[20]  Y. Fouquet,et al.  Filamentous iron-silica deposits from modern and ancient hydrothermal sites , 1988 .

[21]  R. Colwell,et al.  Particulate DNA in Smoker Fluids: Evidence for Existence of Microbial Populations in Hot Hydrothermal Systems , 1990, Applied and environmental microbiology.

[22]  D. Lovley,et al.  Rates of Microbial Metabolism in Deep Coastal Plain Aquifers , 1990, Applied and environmental microbiology.

[23]  T. Lien,et al.  Spore-Forming Thermophilic Sulfate-Reducing Bacteria Isolated from North Sea Oil Field Waters , 1991, Applied and environmental microbiology.

[24]  H. Furnes,et al.  A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanism of the glass-palagonite transformation , 1991 .

[25]  W. Krumbein,et al.  Biocorrosion and biodeterioration of antique and medieval glass , 1991 .

[26]  H. Furnes,et al.  The importance of microbiological activity in the alteration of natural basaltic glass , 1992 .

[27]  P. Bennett,et al.  Microbial Control of Silicate Weathering in Organic-Rich Ground Water , 1992, Science.

[28]  J. Deming,et al.  Deep-sea smokers: windows to a subsurface biosphere? , 1993, Geochimica et cosmochimica acta.

[29]  J. Parkes,et al.  Some like it hot (and oily) , 1993, Nature.

[30]  R. Huber,et al.  Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs , 1993, Nature.

[31]  T. Beveridge,et al.  Minerals Associated with Biofilms Occurring on Exposed Rock in a Granitic Underground Research Laboratory , 1994, Applied and environmental microbiology.

[32]  S. Woodward,et al.  DNA sequence from Cretaceous period bone fragments. , 1994, Science.

[33]  H. Furnes,et al.  Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach , 1995 .

[34]  S. Giovannoni,et al.  Genetic evidence for endolithic microbial life colonizing basaltic glass/seawater interfaces , 1996 .