Residual-based a posteriori error estimate for hypersingular equation on surfaces
暂无分享,去创建一个
Carsten Carstensen | Dirk Praetorius | Ernst P. Stephan | Matthias Maischak | C. Carstensen | E. Stephan | D. Praetorius | M. Maischak
[1] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[2] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[3] E. P. Stephan,et al. The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes , 1991 .
[4] Carsten Carstensen,et al. Numerische Mathematik A posteriori error estimate and h-adaptive algorithm on surfaces for Symm ’ s integral equation , 2001 .
[5] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..
[6] Ernst P. Stephan,et al. An adaptive two-level method for hypersingular integral equations in \(R^3\) , 2000 .
[7] Carsten Carstensen,et al. Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes , 1996, Math. Comput..
[8] Ernst P. Stephan,et al. Regularity of mixed boundary value problems in ℝ3 and boundary element methods on graded meshes , 1990 .
[9] Christian Lage,et al. Transformation of hypersingular integrals and black-box cubature , 2001, Math. Comput..
[10] Ricardo H. Nochetto,et al. Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.
[11] Carsten Carstensen,et al. An a posteriori error estimate for a first-kind integral equation , 1997, Math. Comput..
[12] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..
[13] J. Nédélec,et al. Integral equations with non integrable kernels , 1982 .
[14] Carsten Carstensen,et al. A posteriori error estimates for boundary element methods , 1995 .