Effect of Thickness-to-Chord Ratio on Insect-Like Revolving Wings

[1]  M. Nabawy,et al.  Scalability of resonant motor-driven flapping wing propulsion systems , 2021, Royal Society Open Science.

[2]  Hao Li,et al.  Aerodynamic Modelling of Insect Wings Using Joukowski Transformation , 2021, AIAA AVIATION 2021 FORUM.

[3]  Paul Broadley,et al.  Effects of wing planform shape on low Reynolds number revolving wings , 2021, AIAA AVIATION 2021 FORUM.

[4]  Jianghao Wu,et al.  Leading-edge vortex formation and transient lift generation on a revolving wing at low Reynolds number , 2020 .

[5]  Anya R. Jones,et al.  The initial growth of normalized circulation of the leading-edge vortex on surging and rotating wings , 2020 .

[6]  M. Thompson,et al.  Effects of flapping-motion profiles on insect-wing aerodynamics , 2019, Journal of Fluid Mechanics.

[7]  Jae-Hung Han,et al.  Aerodynamic effects of deviating motion of flapping wings in hovering flight , 2019, Bioinspiration & biomimetics.

[8]  Jae-Hung Han,et al.  Interactions of the wakes of two flapping wings in hover , 2019, Physics of Fluids.

[9]  M. Thompson,et al.  The leading-edge vortex on a rotating wing changes markedly beyond a certain central body size , 2018, Royal Society Open Science.

[10]  M. Dickinson,et al.  Flow Structure and Force Generation on Flapping Wings at Low Reynolds Numbers Relevant to the Flight of Tiny Insects , 2018, Fluids.

[11]  Bo Cheng,et al.  Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number , 2018 .

[12]  T. Colonius,et al.  On the lift-optimal aspect ratio of a revolving wing at low Reynolds number , 2016, Journal of The Royal Society Interface.

[13]  Anya R. Jones,et al.  Unsteady forcing on a flat-plate wing in large transverse gusts , 2017 .

[14]  Mostafa R. A. Nabawy,et al.  The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective , 2017, Journal of The Royal Society Interface.

[15]  D. Rockwell,et al.  The structure of a trailing vortex from a perturbed wing , 2016, Journal of Fluid Mechanics.

[16]  Jong-Seob Han,et al.  The advance ratio effect on the lift augmentations of an insect-like flapping wing in forward flight , 2016, Journal of Fluid Mechanics.

[17]  Jo-Won Chang,et al.  Aerodynamic force and vortex structures of flapping flexible hawkmoth-like wings , 2016 .

[18]  Diana D Chin,et al.  Flapping wing aerodynamics: from insects to vertebrates , 2016, Journal of Experimental Biology.

[19]  Karen Mulleners,et al.  Characterizing a burst leading-edge vortex on a rotating flat plate wing , 2016 .

[20]  Anya R. Jones,et al.  Low Reynolds number acceleration of flat plate wings at high incidence (Invited) , 2016 .

[21]  Kevin Knowles,et al.  The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing , 2015, Bioinspiration & biomimetics.

[22]  Jo-Won Chang,et al.  Vortices behavior depending on the aspect ratio of an insect-like flapping wing in hover , 2015 .

[23]  M. R. Nabawy,et al.  A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight , 2015, PloS one.

[24]  Mostafa R A Nabawy,et al.  Aero-optimum hovering kinematics , 2015, Bioinspiration & biomimetics.

[25]  Jae-Hung Han,et al.  An improved quasi-steady aerodynamic model for insect wings that considers movement of the center of pressure , 2015, Bioinspiration & biomimetics.

[26]  Anya R. Jones,et al.  Stereoscopic PIV analysis on rotary plates in bursting , 2015 .

[27]  D. Rockwell,et al.  Transformation of flow structure on a rotating wing due to variation of radius of gyration , 2015 .

[28]  Donald Rockwell,et al.  Three-dimensional flow structure along simultaneously pitching and rotating wings: effect of pitch rate , 2015 .

[29]  David Lentink,et al.  Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio , 2015, Journal of The Royal Society Interface.

[30]  Adam C. DeVoria,et al.  Aspect-ratio effects on rotating wings: circulation and forces , 2015, Journal of Fluid Mechanics.

[31]  Anya R. Jones,et al.  Vortex Characterization and Force Production on Two- and Three-Dimensional Wing Kinematics , 2015 .

[32]  Jo-Won Chang,et al.  Reynolds number dependency of an insect-based flapping wing , 2014, Bioinspiration & biomimetics.

[33]  Jan W. Kruyt,et al.  Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors , 2014, Journal of The Royal Society Interface.

[34]  D. Rockwell,et al.  Flow structure on a simultaneously pitching and rotating wing , 2014, Journal of Fluid Mechanics.

[35]  Albert Medina,et al.  Tip vortex structure and aerodynamic loading on rotating wings in confined spaces , 2014 .

[36]  K. Yeo,et al.  Ground effect on the aerodynamics of a two-dimensional oscillating airfoil , 2014 .

[37]  William Crowther,et al.  Is flapping flight aerodynamically efficient , 2014 .

[38]  Mostafa R A Nabawy,et al.  On the quasi-steady aerodynamics of normal hovering flight part II: model implementation and evaluation , 2014, Journal of The Royal Society Interface.

[39]  Mostafa R A Nabawy,et al.  On the quasi-steady aerodynamics of normal hovering flight part I: the induced power factor , 2014, Journal of The Royal Society Interface.

[40]  Field Manar,et al.  The Effect of Tip Clearance on Low Reynolds Number Rotating Wings , 2014 .

[41]  D. Rockwell,et al.  Flow structure on a rotating wing: Effect of steady incident flow , 2013 .

[42]  Matthew Ringuette,et al.  Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio , 2013 .

[43]  Xinyan Deng,et al.  Three-dimensional flow visualization and vorticity dynamics in revolving wings , 2013 .

[44]  Matthew Ringuette,et al.  Aspect ratio effects on the leading-edge circulation and forces of rotating flat-plate wings , 2013 .

[45]  D. Rockwell,et al.  Three-dimensional vortex structure on a rotating wing , 2012, Journal of Fluid Mechanics.

[46]  Chaoxu Chen,et al.  Vortext Formation and Forces of Low-Aspect-Ratio, Rotating Flat-Plate Wings at Low Reynolds Number , 2012 .

[47]  Anya R. Jones,et al.  Effects of Acceleration and Pitch Variations on a Rotating Wing. , 2012 .

[48]  Matthew Ringuette,et al.  The effect of aspect ratio on the three-dimensional vortex formation of rotating flat-plate wings , 2012 .

[49]  Michael H Dickinson,et al.  The influence of sensory delay on the yaw dynamics of a flapping insect , 2012, Journal of The Royal Society Interface.

[50]  Xinyan Deng,et al.  Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings , 2011, Bioinspiration & biomimetics.

[51]  Kevin Knowles,et al.  Effect of flapping kinematics on the mean lift of an insect-like flapping wing , 2011 .

[52]  Tee Tai Lim,et al.  Effect of wing–wake interaction on aerodynamic force generation on a 2D flapping wing , 2011 .

[53]  D. Rockwell,et al.  Vortical structures on a flapping wing , 2011 .

[54]  M. Dickinson,et al.  A linear systems analysis of the yaw dynamics of a dynamically scaled insect model , 2010, Journal of Experimental Biology.

[55]  Tee Tai Lim,et al.  On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings , 2010 .

[56]  K. Yeo,et al.  A rotating elliptic airfoil in fluid at rest and in a parallel freestream , 2010 .

[57]  Donald Rockwell,et al.  Three-dimensional flow structure on a maneuvering wing , 2010 .

[58]  Donald Rockwell,et al.  Control of vortical structures on a flapping wing via a sinusoidal leading-edge , 2010 .

[59]  S. Sane,et al.  Aerodynamic effects of flexibility in flapping wings , 2010, Journal of The Royal Society Interface.

[60]  Xinyan Deng,et al.  Power distribution in the hovering flight of the hawk moth Manduca sexta , 2009, Bioinspiration & biomimetics.

[61]  M. Dickinson,et al.  Rotational accelerations stabilize leading edge vortices on revolving fly wings , 2009, Journal of Experimental Biology.

[62]  M. Dickinson,et al.  Biofluiddynamic scaling of flapping, spinning and translating fins and wings , 2009, Journal of Experimental Biology.

[63]  W. Shyy,et al.  Shallow and deep dynamic stall for flapping low Reynolds number airfoils , 2009 .

[64]  R. Zbikowski,et al.  Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles , 2009 .

[65]  K. Yeo,et al.  Aerodynamic forces and flow fields of a two-dimensional hovering wing , 2008 .

[66]  Tee Tai Lim,et al.  Wake-Structure Formation of a Heaving Two-Dimensional Elliptic Airfoil , 2007 .

[67]  Yuan Lu,et al.  Dual leading-edge vortices on flapping wings , 2006, Journal of Experimental Biology.

[68]  M. Dickinson,et al.  Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing , 2006 .

[69]  F. Lehmann,et al.  The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings , 2004, Journal of Experimental Biology.

[70]  M. Dickinson,et al.  The effect of advance ratio on the aerodynamics of revolving wings , 2004, Journal of Experimental Biology.

[71]  J. Usherwood,et al.  The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. , 2002, The Journal of experimental biology.

[72]  J. Usherwood,et al.  The aerodynamics of revolving wings I. Model hawkmoth wings. , 2002, The Journal of experimental biology.

[73]  M. Dickinson,et al.  The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. , 2002, The Journal of experimental biology.

[74]  Mao Sun,et al.  Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. , 2002, The Journal of experimental biology.

[75]  M. Dickinson,et al.  The control of flight force by a flapping wing: lift and drag production. , 2001, The Journal of experimental biology.

[76]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[77]  C. Ellington The Aerodynamics of Hovering Insect Flight. II. Morphological Parameters , 1984 .