Relevance Feedback for the Earth Mover's Distance

Expanding on our preliminary work [1], we present a novel method to heuristically adapt the Earth Mover's Distance to relevance feedback. Moreover, we detail an optimization-based method that takes feedback from the current and past Relevance Feedback iterations into account in order to improve the degree to which the Earth Mover's Distance reflects the preference information given by the user. As shown by our experiments, the adaptation of the Earth Mover's Distance results in a larger number of relevant objects in fewer feedback iterations compared to existing query movement techniques for the Earth Mover's Distance.

[1]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[2]  Remco C. Veltkamp,et al.  Approximation algorithms for the Earth mover's distance under transformations using reference points , 2005, EuroCG.

[3]  Matthieu Cord,et al.  Interactive Exploration for Image Retrieval , 2005, EURASIP J. Adv. Signal Process..

[4]  Tobias Meisen,et al.  Efficient similarity search using the Earth Mover's Distance for large multimedia databases , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[5]  David W. Jacobs,et al.  Approximate earth mover’s distance in linear time , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[7]  Ambuj K. Singh,et al.  Indexing Spatially Sensitive Distance Measures Using Multi-resolution Lower Bounds , 2006, EDBT.

[8]  Gerard Salton,et al.  Optimization of relevance feedback weights , 1995, SIGIR '95.

[9]  Wei-Ying Ma,et al.  Image and Video Retrieval , 2003, Lecture Notes in Computer Science.

[10]  Carlo Tomasi,et al.  Perceptual metrics for image database navigation , 1999 .

[11]  Chiou-Ting Hsu,et al.  Image retrieval with relevance feedback based on graph-theoretic region correspondence estimation , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[12]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[13]  Sharad Mehrotra,et al.  Relevance feedback techniques in the MARS image retrieval system , 2003, Multimedia Systems.

[14]  Lambertus Hesselink,et al.  Feature comparisons of vector fields using earth mover's distance , 1998 .

[15]  Thomas Seidl,et al.  Exploring multimedia databases via optimization-based relevance feedback and the earth mover's distance , 2009, CIKM.

[16]  Ira Assent,et al.  Efficient EMD-based similarity search in multimedia databases via flexible dimensionality reduction , 2008, SIGMOD Conference.

[17]  Weiguo Fan,et al.  Image Retrieval with Relevance Feedback based on Genetic Programming , 2008, SBBD.

[18]  Arnold W. M. Smeulders,et al.  The Amsterdam Library of Object Images , 2004, International Journal of Computer Vision.

[19]  Jérome Fournier,et al.  Exploration and search-by-similarity in CBIR , 2003, 16th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2003).

[20]  Ira Assent,et al.  Approximation Techniques for Indexing the Earth Mover’s Distance in Multimedia Databases , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[21]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[22]  Torsten Grust,et al.  Advances in database technology - EDBT 2006 : 10th International Conference on Extending Database Technology, Munich, Germany, March 2006; proceedings , 2006 .

[23]  Bo Zhang,et al.  Learning in Region-Based Image Retrieval , 2003, CIVR.

[24]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[25]  Remco C. Veltkamp,et al.  Searching notated polyphonic music using transportation distances , 2004, MULTIMEDIA '04.