On covering radii and coset weight distributions of extremal binary self-dual codes of length 40

In the present paper we develop a method to determine the coset weight distributions and covering radius of doubly even self-dual extremal binary codes of length 40. The method is algebraic in nature and largely eliminates necessary computations by electronic computers. The method easily applies to longer codes (e.g. self-dual [56,28,12] binary codes) or to non-extremal codes.

[1]  Vladimir D. Tonchev,et al.  Extremal doubly-even codes of length 40 derived from Hadamard matrices of order 20 , 1990, Discret. Math..

[2]  H. Mattson,et al.  New 5-designs , 1969 .

[3]  B. Venkov,et al.  Combinatorial properties of extremal doubly-even codes of length 48 , 1991 .

[4]  G. C. Shephard,et al.  Finite Unitary Reflection Groups , 1954, Canadian Journal of Mathematics.

[5]  N. J. A. Sloane,et al.  On the Classification and Enumeration of Self-Dual Codes , 1975, J. Comb. Theory, Ser. A.

[6]  Philippe Delsarte,et al.  Four Fundamental Parameters of a Code and Their Combinatorial Significance , 1973, Inf. Control..

[7]  Vera Pless,et al.  On the coveting radius of extremal self-dual codes , 1983, IEEE Trans. Inf. Theory.

[8]  Eiichi Bannai,et al.  Construction of Jacobi forms from certain combinatorial polynomials , 1996 .

[9]  Felix Klein,et al.  Vorlesungen über das Ikosaeder , 1993 .

[10]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[11]  Michio Ozeki Hadamard matrices and doubly even self-dual error-correcting codes , 1987, J. Comb. Theory, Ser. A.

[12]  Andrew M. Gleason,et al.  WEIGHT POLYNOMIALS OF SELF-DUAL CODES AND THE MacWILLIAMS IDENTITIES , 1970 .

[13]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[14]  Vera Pless,et al.  A classification of self-orthogonal codes over GF(2) , 1972, Discret. Math..

[15]  N. Sloane Error-Correcting Codes and Invariant Theory: New Applications of a Nineteenth-Century Technique , 1977 .

[16]  N. J. A. Sloane,et al.  The Binary Self-Dual Codes of Length up to 32: A Revised Enumeration , 1992, J. Comb. Theory, Ser. A.

[17]  D. Ivanov Cosets of an extremal binary code of dimension 48 , 1993 .

[18]  G. C. Shephard Unitary Groups Generated by Reflections , 1953, Canadian Journal of Mathematics.

[19]  Michio Ozeki On the notion of Jacobi polynomials for codes , 1997 .

[20]  V. Pless Introduction to the Theory of Error-Correcting Codes , 1991 .

[21]  Richard A. Brualdi,et al.  Weight enumerators of self-dual codes , 1991, IEEE Trans. Inf. Theory.

[22]  Eiichi Bannai,et al.  On the Ring of Simultaneous Invariants for the Gleason-MacWilliams Group , 1999, Eur. J. Comb..

[23]  Michio Ozeki Examples of even unimodular extremal lattices of rank 40 and their Siegel theta-series of degree 2 , 1988 .

[24]  I. Schur,et al.  Vorlesungen über Invariantentheorie , 1968 .