Global hybrid simulation of the Kelvin–Helmholtz instability at the Venus ionopause

[1] The Kelvin–Helmholtz (K-H) instability at the Venus ionopause is investigated using a two-dimensional global hybrid (particle ions, massless fluid electrons) model for the case where the interplanetary field is oriented transverse to the flow. In order to self-consistently study the kinetic processes at the Venus ionopause, we calculate the entire Venus ionopause–solar wind interaction region kinetically, including the ionosphere, ionopause transition layer, magnetosheath, and solar wind regions, by applying boundary-fitted coordinates to the particle-in-cell code. Calculations are done for the unmagnetized ionospheric condition. It is found that the distribution of ionopause surface waves generated by the K-H instability exhibits a clear asymmetry between hemispheres of upward and downward solar wind motional electric fields. In the hemisphere where the motional electric field points away from the ionosphere, our two-dimensional model observes the development of the instability from the subsolar location, where the Venus ionopause has been thought to be stable due to small velocity shear and stabilizing effects such as gravity stabilization. Ionospheric filaments (streamers) are highly elongated in this hemisphere, and perturbations on the scale of the planetary radius are observed at the flank of the ionotail. In the opposite hemisphere, the instability develops only in a limited region between solar zenith angles (SZA) of ∼40° and 90°, and the surface of the ionotail appears rather smooth except for some special cases. The wavelength of the dominant mode is very long (2000–3000 km) in this hemisphere due to the finite Larmor radius (FLR) stabilizing effect. We show that the process operating at the ionopause is not a localized one but is important for the dynamics of the ionosphere and other regions. The asymmetrical momentum transport across the ionopause yields an asymmetrical convection pattern of the ionosphere. Our model also shows the dynamic nature of the interaction. The dynamic ion removal process associated with the K-H instability is found to play a significant role in the ion escape from the planet (O+ removal rate of approximately several times 1025 particles per second).

[1]  J. McGary,et al.  MHD simulations of boundary layer formation along the dayside Venus ionopause due to mass loading , 1994 .

[2]  R. Elphic,et al.  On the stability of the ionopause of Venus , 1984 .

[3]  M. Fujimoto,et al.  Anomalous ion mixing within an MHD scale Kelvin-Helmholtz vortex. 2: Effects of inhomogeneity , 1995 .

[4]  L. H. Brace,et al.  Plasma clouds above the ionopause of Venus and their implications , 1982 .

[5]  P. Banks Collision frequencies and energy transfer ions , 1966 .

[6]  C. Russell,et al.  The ionotail of Venus: Its configuration and evidence for ion escape , 1987 .

[7]  D. Winske,et al.  HYBRID SIMULATION CODES WITH APPLICATION TO SHOCKS AND UPSTREAM WAVES , 1985 .

[8]  T. Cravens,et al.  The ionopause current layer at Venus , 1991 .

[9]  A. Nagy,et al.  Oxygen ionization rates at Mars and Venus: Relative contributions of impact ionization and charge exchange , 1993 .

[10]  C. Russell,et al.  Position and shape of the Venus bow shock: Pioneer Venus Orbiter observations , 1979 .

[11]  D. Mccomas,et al.  Global hybrid simulation of the solar wind interaction with the dayside of Venus , 1991 .

[12]  C. Russell,et al.  Global characteristics of magnetic flux ropes in the Venus ionosphere , 1983 .

[13]  C. Russell,et al.  Observation of magnetic flux ropes in the Venus ionosphere , 1979, Nature.

[14]  Thomas E. Cravens,et al.  A one-dimensional multispecies magnetohydrodynamic model of the dayside ionosphere of Mars , 1988 .

[15]  T. Tanaka,et al.  Three-dimensional MHD simulation of the solar wind interaction with the ionosphere of Venus: Results of two-component reacting plasma simulation , 1997 .

[16]  Kenneth G. Powell,et al.  A three-dimensional MHD study of solar wind mass loading processes at Venus: Effects of photoionization, electron impact ionization, and charge exchange , 1998 .

[17]  C. Russell,et al.  The Venus ionopause current sheet: Thickness length scale and controlling factors , 1981 .

[18]  S. Brecht,et al.  Global hybrid simulation of unmagnetized planets: Comparison of Venus and Mars , 1991 .

[19]  A. Badan-Dangon,et al.  Comment on “Plasma motion in the Venus ionosphere: Transition to supersonic flow,” by R. C. Whitten, A. Barnes, and P. T. McCormick , 1993 .

[20]  R. Hodges An exospheric perspective of isotopic fractionation of hydrogen on Venus , 1999 .

[21]  S. Cable,et al.  Three-dimensional MHD simulations of the interaction between venus and the solar wind , 1995 .

[22]  P. Mahaffy,et al.  Observations of energetic ions on the nightside of Venus , 1987 .

[23]  S. Brecht Hybrid simulations of the magnetic topology of Mars , 1997 .

[24]  R. Crompton,et al.  The Motions of Slow Electrons in Gases , 1962 .

[25]  C. Russell,et al.  Observations of the dayside ionopause and ionosphere of Venus , 1980 .

[26]  C. Russell,et al.  The magnetic barrier at Venus , 1991 .

[27]  R. Hartle,et al.  Venus ionosphere: An interpretation of Mariner 10 observations , 1974 .

[28]  M. Fujimoto,et al.  Anomalous ion mixing within an MHD scale Kelvin-Helmholtz vortex , 1994 .

[29]  H. Pérez-de-Tejada Fluid dynamic constraints of the Venus ionospheric flow , 1986 .

[30]  V. Thomas Kinetic Kelvin-Helmholtz instability at a finite sized object , 1995 .

[31]  C. Russell,et al.  Waves on the subsolar ionopause of Venus , 1987 .

[32]  C. Russell,et al.  Finite Larmor radius effect on ion pickup at Venus , 1987 .

[33]  I. M. Podgornyi,et al.  The nature of the magnetic flux ropes in the Venus ionosphere , 1980 .

[34]  A. Nagy,et al.  Electron impact ionization in the vicinity of comets , 1987 .

[35]  Gerwin A BRIEF REVIEW OF THE LITERATURE CONCERNING THE STABILITY OF THE INTERFACE BETWEEN TWO FLUIDS IN RELATIVE MOTION. , 1968 .

[36]  T. Tanaka,et al.  Configurations of the solar wind flow and magnetic field around the planets with no magnetic field : calculation by a new MHD simulation scheme , 1993 .

[37]  H. Shinagawa A two‐dimensional model of the Venus ionosphere: 1. Unmagnetized ionosphere , 1996 .

[38]  N. Roderick,et al.  On the Kelvin-Helmholtz instability of the Earth's magnetopause , 1972 .

[39]  A. Nagy,et al.  Hot oxygen atoms in the upper atmospheres of Venus and Mars , 1988 .

[40]  M. Fujimoto,et al.  Ion inertia effect on the Kelvin-Helmholtz instability , 1991 .

[41]  R. S. Wolff,et al.  The onset and development of Kelvin-Helmholtz instability at the Venus ionopause , 1980 .

[42]  C. Russell The Venus bow shock: Detached or attached? , 1977 .

[43]  M. Torr,et al.  Ionization frequencies for solar cycle 21: Revised , 1985 .

[44]  P. Banks Collision frequencies and energy transfer electrons , 1966 .

[45]  F. S. Johnson,et al.  A new concept for the daytime magnetosphere of Venus , 1979 .

[46]  R. Schunk,et al.  Ionospheres of the terrestrial planets , 1980 .

[47]  S. Brecht,et al.  Three-dimensional simulations of the solar wind interaction with Mars , 1993 .

[48]  A. Hassam,et al.  Kelvin–Helmholtz instability in systems with large effective Larmor radius , 1991 .

[49]  J. Luhmann,et al.  Magnetic fields in the ionosphere of Venus , 1991 .

[50]  S. Brecht Magnetic asymmetries of unmagnetized planets , 1990 .

[51]  H. Shimazu Three-dimensional hybrid simulation of magnetized plasma flow around an obstacle , 1999 .

[52]  Jhoon Kim,et al.  A comprehensive magnetohydrodynamic model of the Venus ionosphere , 1991 .

[53]  V. Thomas Three‐dimensional kinetic simulation of the Kelvin‐Helmholtz instability , 1995 .

[54]  D. Intriligator,et al.  An empirical model of the Venusian outer environment 1. The shape of the dayside solar wind‐atmosphere interface , 1980 .

[55]  A. Nagy,et al.  A one‐dimensional time‐dependent model of the magnetized ionosphere of Venus , 1987 .

[56]  Huba Hall dynamics of the Kelvin-Helmholtz instability. , 1994, Physical review letters.

[57]  T. Tanaka Effects of decreasing ionospheric pressure on the solar wind interaction with non-magnetized planets , 1998 .

[58]  C. Russell,et al.  Magnetic flux ropes in the Venus ionosphere: Observations and models , 1983 .

[60]  I. Lerche Validity of the hydromagnetic approach in discussing instability of the magnetospheric boundary , 1966 .

[61]  D. Intriligator Results of the first statistical study of Pioneer Venus Orbiter plasma observations in the distant Venus tail: Evidence for a hemispheric asymmetry in the pickup of ionospheric ions , 1989 .

[62]  O. Vaisberg,et al.  Formation of the plasma mantle in the Venusian magnetosphere , 1984 .

[63]  D. Winske,et al.  Kinetic simulations of the Kelvin-Helmholtz instability at the magnetopause , 1993 .

[64]  W. C. Knudsen,et al.  Improved Venus ionopause altitude calculation and comparison with measurement , 1982 .

[65]  S. Bougher,et al.  A two-dimensional MHD model of the solar wind interaction with Mars , 1999 .

[66]  Kenneth G. Powell,et al.  A New Axisymmetric MHD Model of the Interaction of the Solar Wind with Venus , 1996 .

[67]  E. Kallio,et al.  Atmospheric effects of proton precipitation in the Martian atmosphere and its connection to the Mars‐solar wind interaction , 2001 .

[68]  J. Phillips,et al.  Asymmetries in the location of the Venus ionopause , 1988 .

[69]  H. Niemann,et al.  Superthermal >36‐eV ions observed in the near‐tail region of Venus by the Pioneer Venus Orbiter Neutral Mass Spectrometer , 1991 .

[70]  H. Nagano Effect of finite ion larmor radius on the Kelvin-Helmholtz instability of the magnetopause , 1978 .

[71]  R. S. Wolff,et al.  PHYSICS OF THE INTERACTION OF THE SOLAR WIND WITH THE IONOSPHERE OF VENUS: , 2022, Venus.

[72]  Venus ionospheric 'clouds' - Relationship to the magnetosheath field geometry , 1991 .

[73]  Thomas Westermann Numerical modelling of the stationary Maxwell–Lorentz system in technical devices , 1994 .

[74]  W. C. Knudsen,et al.  Spatial and temporal variations of the ion velocity measured in the Venus ionosphere , 1987 .

[75]  Fujimoto,et al.  Anomalous ion mixing within a Kelvin-Helmholtz vortex in a collisionless plasma. , 1992, Physical review letters.

[76]  C. Russell,et al.  The role of charge exchange in the solar wind absorption by Venus , 1981 .

[77]  J. Huba,et al.  The Kelvin‐Helmholtz instability: Finite Larmor radius magnetohydrodynamics , 1996 .

[78]  C. Russell,et al.  Magnetic field and plasma wave observations in a plasma cloud at Venus , 1982 .

[79]  A. M. Krymskii,et al.  Magnetic fields in the venus ionosphere: General features , 1988 .

[80]  D. Winske,et al.  Kinetic simulation of the Kelvin‐Helmholtz instability at the Venus ionopause , 1991 .

[81]  C. Russell,et al.  A statistical study of ions and magnetic fields in the Venus magnetotail , 1990 .

[82]  R. S. Steinolfson,et al.  Numerical modeling of the solar wind interaction with Venus , 1996 .

[83]  H. Shimazu Three-dimensional hybrid simulation of solar wind interaction with unmagnetized planets , 2001 .

[84]  N. Omidi,et al.  A kinetic study of solar wind mass loading and cometary bow shocks , 1987 .

[85]  C. Russell,et al.  The dynamic behavior of the Venus ionosphere in response to solar wind interactions , 1980 .

[86]  R. S. Steinolfson,et al.  Numerical simulations of mass loading in the solar , 1996 .

[87]  D. Hunten,et al.  Depletion of solar wind plasma near a planetary boundary , 1976 .

[88]  Janet G. Luhmann,et al.  Magnetic field near Venus: A comparison between Pioneer Venus Orbiter magnetic field observations and an MHD simulation , 1998 .