Attributes of neural networks for extracting continuous vegetation variables from optical and radar

Efficient algorithms that incorporate different types of spectral data and ancillary data are being developed to extract continuous vegetation variables. Inferring continuous variables implies that functional relationships must be found among the predicted variable(s), the remotely sensed data and the ancillary data. Neural networks have attributes which facilitate the extraction of vegetation variables. The advantages and power of neural networks for extracting continuous vegetation variables using optical and/or radar data and ancillary data are discussed and compared to traditional techniques. Studies that have made advances in this research area are reviewed and discussed. Neural networks can provide accurate initial models for extracting vegetation variables when an adequate amount of data is available. Networks provide a performance standard for evaluating existing physically based models. Many practical problems occur when inverting physically based models using traditional techniques and neural ne...

[1]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[2]  Michael T. Manry,et al.  Backpropagation representation theorem using power series , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[3]  William J. Emery,et al.  Optimal sampling conditions for estimating grassland parameters via reflectance , 1996, IEEE Trans. Geosci. Remote. Sens..

[4]  Alan H. Strahler,et al.  Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing , 1992, IEEE Trans. Geosci. Remote. Sens..

[5]  F.T. Ulaby,et al.  Mimics II: Radiative Transfer Modeling Of Discontinuous Tree Canopies At Microwave Frequencies , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[6]  Jiaguo Qi,et al.  External factor consideration in vegetation index development , 1994 .

[7]  Bernard Pinty,et al.  Extracting information on surface properties from bidirectional reflectance measurements , 1991 .

[8]  S. Jacquemoud Inversion of the PROSPECT + SAIL Canopy Reflectance Model from AVIRIS Equivalent Spectra: Theoretical Study , 1993 .

[9]  Tuomas Haeme,et al.  Estimation of forest stand characteristics using Landsat TM, NOAA AVHRR, ERS-1 SAR, and other image data , 1995, Remote Sensing.

[10]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[11]  Garik Gutman,et al.  Vegetation indices from AVHRR: An update and future prospects , 1991 .

[12]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[13]  Kamal Sarabandi,et al.  Estimation of forest biophysical characteristics in Northern Michigan with SIR-C/X-SAR , 1995, IEEE Trans. Geosci. Remote. Sens..

[14]  Vito Cappellini,et al.  Remote Sensing Data Fusion on Intelligent Terminals , 1992, Eur. Trans. Telecommun..

[15]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[16]  M.T. Manry,et al.  Modular neural network architecture using piece-wise linear mapping , 1996, Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers.

[17]  H. Akaike A new look at the statistical model identification , 1974 .

[18]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[19]  Eric S. Kasischke,et al.  Correlating radar backscatter with components of biomass in loblolly pine forests , 1995, IEEE Trans. Geosci. Remote. Sens..

[20]  W. Dulaney,et al.  Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer , 1991 .

[21]  R. Dickinson,et al.  A physical model of the bidirectional reflectance of vegetation canopies: 2. Inversion and validation , 1990 .

[22]  Michael T. Manry,et al.  The design of multi-layer perceptrons using building blocks , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[23]  Michael T. Manry,et al.  An automated system for developing neural network short term load forecasters , 1996 .

[24]  M. Jakubauskas Thematic Mapper characterization of lodgepole pine seral stages in Yellowstone National Park, USA , 1996 .

[25]  Michael T. Manry,et al.  A robust statistical-based estimator for soil moisture retrieval from radar measurements , 1997, IEEE Trans. Geosci. Remote. Sens..

[26]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[27]  James A. Smith,et al.  LAI inversion using a back-propagation neural network trained with a multiple scattering model , 1993, IEEE Trans. Geosci. Remote. Sens..

[28]  Kamal Sarabandi,et al.  An iterative inversion algorithm with application to the polarimetric radar response of vegetation canopies , 1994, IEEE Trans. Geosci. Remote. Sens..

[29]  Curtis E. Woodcock,et al.  Change detection using the Gramm-Schmidt transformation applied to mapping forest mortality , 1994 .

[30]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[31]  M. T. Manry,et al.  A self-organizing system for the development of neural network parameter estimators , 1995, Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing.

[32]  Michael T. Manry,et al.  Minimum mean square estimation and neural networks , 1996, Neurocomputing.

[33]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[34]  Ghassem Asrar,et al.  MTPE EOS Reference Handbook , 1995 .

[35]  Edwin T. Engman,et al.  Status of remote sensing algorithms for estimation of land surface state parameters , 1995 .

[36]  Kurt Hornik,et al.  Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks , 1990, Neural Networks.

[37]  P. Atkinson,et al.  Introduction Neural networks in remote sensing , 1997 .

[38]  David B. Fogel An information criterion for optimal neural network selection , 1991, IEEE Trans. Neural Networks.

[39]  F. Ulaby,et al.  Vegetation modeled as a water cloud , 1978 .

[40]  James D. Keeler,et al.  Layered Neural Networks with Gaussian Hidden Units as Universal Approximations , 1990, Neural Computation.

[41]  Guoqing Sun,et al.  A three-dimensional radar backscatter model of forest canopies , 1995 .

[42]  Leung Tsang,et al.  Active polarimetric microwave remote sensing of corn and multiparametric retrieval of corn parameters with an artificial neural network , 1993 .

[43]  Michael T. Manry,et al.  Fast training of neural networks for remote sensing , 1994 .

[44]  Michael I. Jordan,et al.  Learning piecewise control strategies in a modular neural network architecture , 1993, IEEE Trans. Syst. Man Cybern..

[45]  B. Pinty,et al.  A physical model of the bidirectional reflectance of vegetation canopies , 1990 .

[46]  Steven J. Nowlan,et al.  Maximum Likelihood Competitive Learning , 1989, NIPS.

[47]  Tomas Hrycej,et al.  A modular architecture for efficient learning , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[48]  Hean-Teik Chuah,et al.  A Monte Carlo method for radar backscatter from a half-space random medium , 1989 .

[49]  Qiang Yu,et al.  Map estimation and the multilayer perceptron , 1993, Neural Networks for Signal Processing III - Proceedings of the 1993 IEEE-SP Workshop.

[50]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[51]  Michael T. Manry,et al.  Surface parameter retrieval using fast learning neural networks , 1993 .