A network analysis of plant–pollinator interactions in temperate rain forests of Chiloé Island, Chile

This study characterizes the structure of a plant–pollinator network in a temperate rain forest of Chiloé Island, southern Chile, where woody species are strongly dependent on biotic pollinators, and analyzes its robustness to the loss of participating species. Degree distribution, nestedness, and expected species persistence were evaluated. In addition, we assessed the roles of predefined subsets of plants (classified by life forms) and pollinators (grouped by taxonomic orders) in the network’s structure and dynamics. For this, we simulated the complete removal of each plant and pollinator subset and analyzed the resultant connectivity patterns, as well as the expected long-term species losses by running a stochastic model. Finally, we evaluated the sensitivity of the network structure to the loss of single species in order to identify potential targets for conservation. Our results show that the plant–pollinator network of this Chilean temperate rain forest exhibits a nested structure of interactions, with a degree distribution best described by a power law model. Model simulations revealed the importance of trees and hymenopterans as pivotal groups that maintain the core structure of the pollination network and guarantee overall species persistence. The hymenopterans Bombus dahlbomii and Diphaglossa gayi, the shrubs Tepualia stipularis and Ugni molinae, the vines Mitraria coccinea and Asteranthera ovata, and the entire set of tree species exerted a disproportionately large influence on the preservation of network structure and should be considered as focal species for conservation programs given current threats from selective logging and habitat loss.

[1]  E. Dinerstein,et al.  Una evaluacion del estado de conservacion de las ecoregiones terrestres de America Latina y el Caribe , 1995 .

[2]  David R. Anderson,et al.  Multimodel Inference , 2004 .

[3]  Diego P. Vázquez,et al.  ASYMMETRIC SPECIALIZATION: A PERVASIVE FEATURE OF PLANT-POLLINATOR INTERACTIONS , 2004 .

[4]  P. Jasinski Frontiers of Biogeography: New Directions in the Geography of Nature , 2006 .

[5]  Miguel A. Rodríguez-Gironés,et al.  A new algorithm to calculate the nestedness temperature of presence–absence matrices , 2006 .

[6]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[7]  M. Pascual,et al.  Ecological networks : Linking structure to dynamics in food webs , 2006 .

[8]  J. Armesto,et al.  Changes in tree species richness, stand structure and soil properties in a successional chronosequence in northern Chiloé Island, Chile , 2002 .

[9]  J Memmott,et al.  The structure of a plant-pollinator food web. , 1999, Ecology letters.

[10]  Neo D. Martinez,et al.  Network structure and biodiversity loss in food webs: robustness increases with connectance , 2002, Ecology Letters.

[11]  Mark V. Lomolino,et al.  Frontiers of biogeography : new directions in the geography of nature , 2004 .

[12]  Jordi Bascompte,et al.  Plant-Animal Mutualistic Networks: The Architecture of Biodiversity , 2007 .

[13]  J. Armesto,et al.  Flowering and fruiting patterns in the temperate rainforest of Chiloé, Chile: ecologies and climatic constraints , 1994 .

[14]  Neo D. Martinez,et al.  Simple rules yield complex food webs , 2000, Nature.

[15]  Jordi Bascompte,et al.  Habitat loss and the structure of plant-animal mutualistic networks. , 2006, Ecology letters.

[16]  J. Armesto,et al.  Seed dispersal syndromes in the rain forest of Chiloé: evidence for the importance of biotic dispersal in a temperate rain forest , 1989 .

[17]  D. Lanfranco,et al.  Actividad de los polinizadores en el parque nacional Puyehue, X región, Chile , 1991 .

[18]  Rodrigo Ramos-Jiliberto,et al.  Structure and dynamics of pollination networks: the role of alien plants , 2009 .

[19]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[20]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[21]  Luis Santamaría,et al.  Linkage Rules for Plant–Pollinator Networks: Trait Complementarity or Exploitation Barriers? , 2007, PLoS biology.

[22]  S. Strogatz Exploring complex networks , 2001, Nature.

[23]  Andrew D. Huberman,et al.  Finger-length ratios and sexual orientation , 2000, Nature.

[24]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Jordi Bascompte,et al.  Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance , 2006, Science.

[26]  Neo D. Martinez,et al.  Food-web structure and network theory: The role of connectance and size , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Diego P. Vázquez,et al.  Degree distribution in plant–animal mutualistic networks: forbidden links or random interactions? , 2005 .

[28]  Pedro Jordano,et al.  Patterns of Mutualistic Interactions in Pollination and Seed Dispersal: Connectance, Dependence Asymmetries, and Coevolution , 1987, The American Naturalist.

[29]  Paulo Guimarães,et al.  Improving the analyses of nestedness for large sets of matrices , 2006, Environ. Model. Softw..

[30]  Jane Memmott,et al.  Tolerance of pollination networks to species extinctions , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  Paulo R. Guimar,et al.  Improving the analyses of nestedness for large sets of matrices , 2006 .

[32]  J. Bascompte,et al.  Invariant properties in coevolutionary networks of plant-animal interactions , 2002 .

[33]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[34]  Juan J. Armesto,et al.  Diversity, flower visitation frequency and generalism of pollinators in temperate rain forests of Chiloé Island, Chile , 2005 .

[35]  Marcelo A. Aizen,et al.  Historia natural y conservación de los mutualismos planta-animal del bosque templado de Sudamérica austral , 2002 .

[36]  V. Heywood,et al.  Global Biodiversity Assessment , 1996 .

[37]  R. Solé,et al.  Topological properties of food webs: from real data to community assembly models Oikos 102 , 2003 .

[38]  Kathryn E. Sieving,et al.  Linking forest structure and composition: avian diversity in successional forests of Chiloé Island, Chile , 2005 .

[39]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[40]  R. Lawford,et al.  High-latitude rainforests and associated ecosystems of the West Coast of the Americas: climate, hydrology, ecology and conservation. , 1997 .

[41]  J. Armesto,et al.  The Importance of Plant-Bird Mutualisms in the Temperate Rainforest of Southern South America , 1996 .

[42]  J. J. Armesto,et al.  Estrategias de germinacion y latencia de semillas en especies del bosque templado de chiloe, chile , 1996 .

[43]  Carlos J. Melián,et al.  The nested assembly of plant–animal mutualistic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Neo D. Martinez Constant Connectance in Community Food Webs , 1992, The American Naturalist.

[45]  Wirt Atmar,et al.  The measure of order and disorder in the distribution of species in fragmented habitat , 1993, Oecologia.