Verifiable Measurement-Only Blind Quantum Computing with Stabilizer Testing.

We introduce a simple protocol for verifiable measurement-only blind quantum computing. Alice, a client, can perform only single-qubit measurements, whereas Bob, a server, can generate and store entangled many-qubit states. Bob generates copies of a graph state, which is a universal resource state for measurement-based quantum computing, and sends Alice each qubit of them one by one. Alice adaptively measures each qubit according to her program. If Bob is honest, he generates the correct graph state, and, therefore, Alice can obtain the correct computation result. Regarding the security, whatever Bob does, Bob cannot get any information about Alice's computation because of the no-signaling principle. Furthermore, malicious Bob does not necessarily send the copies of the correct graph state, but Alice can check the correctness of Bob's state by directly verifying the stabilizers of some copies.

[1]  Masahito Hayashi,et al.  Group theoretical study of LOCC-detection of maximally entangled states using hypothesis testing , 2008, 0810.3380.

[2]  Elham Kashefi,et al.  Blind quantum computing with weak coherent pulses. , 2011, Physical review letters.

[3]  Masahito Hayashi,et al.  Tight asymptotic bounds on local hypothesis testing between a pure bipartite state and the white noise state , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[4]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[5]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  E. Kashefi,et al.  Experimental verification of quantum computation , 2013, Nature Physics.

[7]  Masahito Hayashi,et al.  A study of LOCC-detection of a maximally entangled state using hypothesis testing , 2006 .

[8]  Joseph Fitzsimons,et al.  Optimal Blind Quantum Computation , 2013, Physical review letters.

[9]  Elham Kashefi,et al.  Ground state blind quantum computation on AKLT state , 2015, Quantum Inf. Comput..

[10]  Masahito Hayashi,et al.  Introduction to Quantum Information Science , 2014 .

[11]  Keisuke Fujii,et al.  Blind topological measurement-based quantum computation , 2011, Nature Communications.

[12]  Umesh V. Vazirani,et al.  Classical command of quantum systems , 2013, Nature.

[13]  Frédéric Magniez,et al.  Self-testing of universal and fault-tolerant sets of quantum gates , 2000, STOC '00.

[14]  J. Fitzsimons,et al.  Overcoming efficiency constraints on blind quantum computation , 2014, 1411.4777.

[15]  M. Owari,et al.  Asymptotic local hypothesis testing between a pure bipartite state and the completely mixed state , 2011, 1105.3789.

[16]  Joseph P. Romano,et al.  Testing Statistical Hypotheses, Third Edition , 2008, Springer texts in statistics.

[17]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[18]  T. Morimae,et al.  Ancilla-Driven Universal Blind Quantum Computation , 2012, 1210.7450.

[19]  Masahito Hayashi,et al.  Two-way classical communication remarkably improves local distinguishability , 2007, 0708.3154.

[20]  Tomoyuki Morimae Continuous-variable blind quantum computation. , 2012, Physical review letters.

[21]  D. Gross,et al.  Novel schemes for measurement-based quantum computation. , 2006, Physical review letters.

[22]  Keisuke Fujii,et al.  Secure entanglement distillation for double-server blind quantum computation. , 2013, Physical review letters.

[23]  T. Morimae Verification for measurement-only blind quantum computing , 2012, 1208.1495.

[24]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[25]  Joseph Fitzsimons,et al.  Device-Independent Verifiable Blind Quantum Computation , 2015, ArXiv.

[26]  Qin Li,et al.  Triple-server blind quantum computation using entanglement swapping , 2014 .

[27]  Joseph Fitzsimons,et al.  Composable Security of Delegated Quantum Computation , 2013, ASIACRYPT.

[28]  A. Miyake,et al.  Measurement-based quantum computer in the gapped ground state of a two-body Hamiltonian. , 2008, Physical review letters.

[29]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[30]  Masahito Hayashi,et al.  Local Hypothesis Testing Between a Pure Bipartite State and the White Noise State , 2010, IEEE Transactions on Information Theory.