Multivariable backward-shift-invariant subspaces and observability operators

It is well known that subspaces of the Hardy space over the unit disk which are invariant under the backward shift occur as the image of an observability operator associated with a discrete-time linear system with stable state-dynamics, as well as the functional-model space for a Hilbert space contraction operator. We discuss two multivariable extensions of this structure, where the classical Hardy space is replaced by (1) the Fock space of formal power series in a collection of d noncommuting indeterminates with norm-square-summable vector coefficients, and (2) the reproducing kernel Hilbert space (often now called the Arveson space) over the unit ball in $${\mathbb{C}^{d}}$$ with reproducing kernel $${k(\lambda, \zeta) = 1/(1 - \langle \lambda, \zeta \rangle) (\lambda, \zeta \in \mathbb{C}^{d} with \| \lambda \|, \| \zeta \| < 1}$$). In the first case, the associated linear system is of noncommutative Fornasini–Marchesini type with evolution along a free semigroup with d generators, while in the second case the linear system is a standard (commutative) Fornasini–Marchesini-type system with evolution along the integer lattice $${\mathbb{Z}^{d}}$$ . An abelianization map (or symmetrization of the Fock space) links the first case with the second. The second case has special features depending on whether the operator-tuple defining the state dynamics is commutative or not. The paper focuses on multidimensional state-output linear systems and the associated observability operators; followup papers Ball, Bollotnikov, and Fang (2007a, 2007b) use the results here to extend the analysis to represent observability-operator ranges as reproducing kernel Hilbert spaces with reproducing kernels constructed from the transfer function of a conservative multidimensional (noncommutative or commutative) input-state-output linear system.

[1]  William Arveson,et al.  Subalgebras ofC*-algebras III: Multivariable operator theory , 1997 .

[2]  J. Sarkar,et al.  Characteristic Function of a Pure Commuting Contractive Tuple , 2005 .

[3]  H. Helson Harmonic Analysis , 1983 .

[4]  J. Ball,et al.  Conservative Structured Noncommutative Multidimensional Linear Systems , 2005 .

[5]  Operator Tuples and Analytic Models over General Domains in C , 2002 .

[6]  G. E. Colling,et al.  New Results in 2-D Systems Theory, Part II: 2-D State-Space Models-Realization and the Notions of Controllability, Observability, and Minimality , 1977 .

[7]  Joseph A. Ball,et al.  Review: Harry Dym, $J$ Contractive matrix functions, reproducing kernel Hilbert spaces and interpolation , 1990 .

[8]  John E. McCarthy,et al.  Pick Interpolation and Hilbert Function Spaces , 2002 .

[9]  The Operator-valued Poisson Kernel and its Applications , 2003 .

[10]  Daniel Alpay,et al.  On commuting operators solving Gleason's problem , 2005 .

[11]  Gelu Popescu Interpolation Problems in Several Variables , 1998 .

[12]  Operator theory on noncommutative varieties, II , 2005, math/0509242.

[13]  M. Morf,et al.  New results in 2-D systems theory, part II: 2-D state-space models—Realization and the notions of controllability, observability, and minimality , 1977, Proceedings of the IEEE.

[14]  The Structure of Inner Multipliers on Spaces with Complete Nevanlinna Pick Kernels , 2001, math/0108007.

[15]  Alvaro Arias,et al.  Noncommutative interpolation and Poisson transforms , 1997 .

[16]  L. Rodman,et al.  Finite dimensional backward shift invariant subspaces of Arveson spaces , 2002 .

[17]  Israel Gohberg,et al.  The State Space Method Generalizations and Applications , 2005 .

[18]  Von Neumann inequality for $(B(\mathscr{H})^n)_1$. , 1991 .

[19]  Joseph A. Ball,et al.  Lax-phillips Scattering and Conservative Linear Systems: A Cuntz-algebra Multidimensional Setting , 2005 .

[20]  H. Dym J Contractive Matrix Functions, Reproducing Kernel Hilbert Spaces and Interpolation , 1989 .

[21]  J. Ball,et al.  Transfer-function realization for multipliers of the Arveson space , 2006, math/0610637.

[22]  Joseph A. Ball,et al.  Conservative Input–State–Output Systems with Evolution on a Multidimensional Integer Lattice , 2005, Multidimens. Syst. Signal Process..

[23]  S. McCullough,et al.  Invariant Subspaces and Nevanlinna–Pick Kernels , 2000 .

[24]  J. Ball,et al.  Formal Reproducing Kernel Hilbert Spaces: The Commutative and Noncommutative Settings , 2003 .

[25]  Schur-class multipliers on the Arveson space : De Branges-Rovnyak reproducing kernel spaces and commutative transfer-function realizations , 2006, math/0610638.

[26]  Operator-valued Nevanlinna-Pick kernels and the functional models for contraction operators , 1987 .

[27]  Gelu Popescu,et al.  Multi-analytic operators on Fock spaces , 1995 .

[28]  Gelu Popescu Poisson Transforms on Some C*-Algebras Generated by Isometries , 1999 .

[29]  J. Arazy,et al.  Analytic models for commuting operator tuples on bounded symmetric domains , 2002 .

[30]  D. Alpay,et al.  A Theorem of Beurling-sLax Type for Hilbert Spaces of Functions Analytic in the Unit Ball , 2003 .

[31]  Schur-class multipliers on the Fock space: de Branges-Rovnyak reproducing kernel spaces and transfer-function realizations , 2006, math/0610635.

[32]  K. Davidson,et al.  Nevanlinna-Pick interpolation for non-commutative analytic Toeplitz algebras , 1998 .

[33]  The curvature invariant of a Hilbert module over C[z_1,...,z_d] , 1998, math/9808100.

[34]  J. Sarkar,et al.  Characteristic function for polynomially contractive commuting tuples , 2006 .

[35]  C. Foias,et al.  Harmonic Analysis of Operators on Hilbert Space , 1970 .

[36]  K. Davidson Free Semigroup Algebras A Survey , 2001 .

[37]  Gelu Popescu,et al.  Isometric dilations for infinite sequences of noncommuting operators , 1989 .

[38]  M. Renteln Finitely Generated Ideals in the Banach Algebra $H^∞$ , 1975 .

[39]  S. Pott STANDARD MODELS UNDER POLYNOMIAL POSITIVITY CONDITIONS , 1999 .

[40]  Finite Dimensional Backward Shift Invariant Subspaces of a Class of Reproducing Kernel Hilbert Spaces , 2004 .

[41]  Operator theory on noncommutative varieties , 2005, math/0507158.

[42]  V. Müller,et al.  Standard models for some commuting multioperators , 1993 .

[43]  Joseph A. Ball,et al.  Structured Noncommutative Multidimensional Linear Systems , 2005, SIAM J. Control. Optim..

[44]  S. W. Drury,et al.  A generalization of von Neumann’s inequality to the complex ball , 1978 .

[45]  The Characteristic Functions of Operator Theory and Electrical Network Realization , 1972 .

[46]  Krzysztof Galkowski Minimal State-space Realization for a Class of nD Systems , 2005 .

[47]  Standard Operator Models in the Polydisc, II , 1995 .

[48]  J. William Helton,et al.  Discrete time systems, operator models, and scattering theory , 1974 .