The dual glutamatergic–GABAergic phenotype of hippocampal granule cells

[1]  L. Hamlyn Electron Microscopy of Mossy Fibre Endings in Ammon's Horn , 1961, Nature.

[2]  I. Crawford,et al.  Localization and Release of Glutamic Acid in Relation to the Hippocampal Mossy Fibre Pathway , 1973, Nature.

[3]  L. Iversen,et al.  Uptake and metabolism of γ-aminobutyric acid by neurones and glial cells , 1975 .

[4]  D. Amaral A golgi study of cell types in the hilar region of the hippocampus in the rat , 1978, The Journal of comparative neurology.

[5]  T. H. Brown,et al.  Voltage-clamp analysis of mossy fiber synaptic input to hippocampal neurons. , 1983, Journal of neurophysiology.

[6]  A. Ganong,et al.  2-Amino-4-phosphonobutyrate selectively blocks mossy fiber-CA3 responses in guinea pig but not rat hippocampus , 1984, Brain Research.

[7]  G. Buzsáki Feed-forward inhibition in the hippocampal formation , 1984, Progress in Neurobiology.

[8]  C. D. Stern,et al.  Handbook of Chemical Neuroanatomy Methods in Chemical Neuroanatomy. Edited by A. Bjorklund and T. Hokfelt. Elsevier, Amsterdam, 1983. Cloth bound, 548 pp. UK £140. (Volume 1 in the series). , 1986, Neurochemistry International.

[9]  J. Storm-Mathisen,et al.  Immunocytochemical localization of the GABA transporter in rat brain , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  C. Jahr,et al.  Quisqualate receptor-mediated depression of calcium currents in hippocampal neurons , 1990, Neuron.

[11]  A. D. Smith,et al.  Coexistence of GABA and glutamate in mossy fiber terminals of the primate hippocampus: An ultrastructural study , 1991, The Journal of comparative neurology.

[12]  J. Priestley,et al.  Differential expression of GABA transporter-1 messenger RNA in subpopulations of GABA neurones , 1993, Neuroscience Letters.

[13]  G. Sperk,et al.  Hippocampal granule cells express glutamic acid decar☐ylase-67 after limbic seizures in the rat , 1995, Neuroscience.

[14]  C. Ribak,et al.  GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. , 1996, The Journal of comparative neurology.

[15]  W. Löscher,et al.  Immunocytochemical localization of GABA immunoreactivity in dentate granule cells of normal and kindled rats , 1996, Neuroscience Letters.

[16]  R. S. Sloviter,et al.  Basal expression and induction of glutamate decarboxylase GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus , 1996, The Journal of comparative neurology.

[17]  C. Ribak,et al.  GABA plasma membrane transporters, GAT‐1 and GAT‐3, display different distributions in the rat hippocampus , 1996 .

[18]  Hilmar Bading,et al.  Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression , 1997, Nature.

[19]  Simultaneous release of glutamate and GABA might be induced in mossy fibers after kindling , 1997, Neuroscience Letters.

[20]  Xavier Leinekugel,et al.  Ca2+ Oscillations Mediated by the Synergistic Excitatory Actions of GABAA and NMDA Receptors in the Neonatal Hippocampus , 1997, Neuron.

[21]  E. Jorgensen,et al.  Identification and characterization of the vesicular GABA transporter , 1997, Nature.

[22]  K. Obata,et al.  Changes in extracellular glutamate and GABA levels in the hippocampal CA3 and CA1 areas and the induction of glutamic acid decarboxylase-67 in dentate granule cells of rats treated with kainic acid , 1998, Brain Research.

[23]  P. Jonas,et al.  Corelease of two fast neurotransmitters at a central synapse. , 1998, Science.

[24]  K. Osen,et al.  The Vesicular GABA Transporter, VGAT, Localizes to Synaptic Vesicles in Sets of Glycinergic as Well as GABAergic Neurons , 1998, The Journal of Neuroscience.

[25]  G Buzsáki,et al.  GABAergic Cells Are the Major Postsynaptic Targets of Mossy Fibers in the Rat Hippocampus , 1998, The Journal of Neuroscience.

[26]  D. Kullmann,et al.  Activation of AMPA, Kainate, and Metabotropic Receptors at Hippocampal Mossy Fiber Synapses Role of Glutamate Diffusion , 1998, Neuron.

[27]  F. Suzuki,et al.  Excitatory Granule Cells of the Dentate Gyrus Exhibit a Double Inhibitory Neurochemical Content after Intrahippocampal Administration of Kainate in Adult Mice , 1999, Experimental Neurology.

[28]  Y. Jo,et al.  Synaptic corelease of ATP and GABA in cultured spinal neurons , 1999, Nature Neuroscience.

[29]  R. Nicoll,et al.  Glutamate and gamma-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[30]  P. Allaire,et al.  Receptors with opposing functions are in postsynaptic microdomains under one presynaptic terminal , 2000, Nature Neuroscience.

[31]  R. Somogyi,et al.  Differential regulation of adult and embryonic glutamate decarboxylases in rat dentate granule cells after kainate-induced limbic seizures , 2000, Neuroscience.

[32]  D. Henze,et al.  The multifarious hippocampal mossy fiber pathway: a review , 2000, Neuroscience.

[33]  D. Sulzer,et al.  Dale's principle and glutamate corelease from ventral midbrain dopamine neurons , 2000, Amino Acids.

[34]  A. Draguhn,et al.  Presence of γ-aminobutyric acid transporter mRNA in interneurons and principal cells of rat hippocampus , 2000, Neuroscience Letters.

[35]  R. Gutiérrez Seizures induce simultaneous GABAergic and glutamatergic transmission in the dentate gyrus-CA3 system. , 2000, Journal of neurophysiology.

[36]  A. Craig,et al.  Mismatched Appositions of Presynaptic and Postsynaptic Components in Isolated Hippocampal Neurons , 2000, The Journal of Neuroscience.

[37]  R. Nicoll,et al.  Presynaptic Kainate Receptor Mediation of Frequency Facilitation at Hippocampal Mossy Fiber Synapses , 2001, Science.

[38]  U. Heinemann,et al.  Kindling induces transient fast inhibition in the dentate gyrus–CA3 projection , 2001, The European journal of neuroscience.

[39]  A. Carleton,et al.  A dendrodendritic reciprocal synapse provides a recurrent excitatory connection in the olfactory bulb , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Gutiérrez,et al.  Activity-dependent expression of GAD67 in the granule cells of the rat hippocampus , 2001, Brain Research.

[41]  Y. Ben-Ari Developing networks play a similar melody , 2001, Trends in Neurosciences.

[42]  D. Kullmann,et al.  Monosynaptic GABAergic Signaling from Dentate to CA3 with a Pharmacological and Physiological Profile Typical of Mossy Fiber Synapses , 2001, Neuron.

[43]  D. Henze,et al.  Revisiting the role of the hippocampal mossy fiber synapse , 2001, Hippocampus.

[44]  R. Gutiérrez,et al.  Vesicular GABA transporter mRNA expression in the dentate gyrus and in mossy fiber synaptosomes. , 2001, Brain research. Molecular brain research.

[45]  Bo Yang,et al.  A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor , 2002, Nature Neuroscience.

[46]  R. Gutiérrez Activity-dependent expression of simultaneous glutamatergic and GABAergic neurotransmission from the mossy fibers in vitro. , 2002, Journal of neurophysiology.

[47]  G. Buzsáki,et al.  Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo , 2002, Nature Neuroscience.

[48]  Y. Ben-Ari,et al.  Early sequential formation of functional GABAA and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus , 2002, The European journal of neuroscience.

[49]  R. Gutiérrez,et al.  The Expression of GABA in Mossy Fiber Synaptosomes Coincides with the Seizure-Induced Expression of GABAergic Transmission in the Mossy Fiber Synapse , 2002, Experimental Neurology.

[50]  P. Jonas,et al.  TwoB or not twoB: differential transmission at glutamatergic mossy fiber–interneuron synapses in the hippocampus , 2002, Trends in Neurosciences.

[51]  A. Tobin,et al.  Glutamic Acid Decarboxylase , 2002 .

[52]  The GAD-given Right of Dentate Gyrus Granule Cells to Become GABAergic. , 2002, Epilepsy currents.

[53]  C. McBain,et al.  Interneuron Diversity series: Containing the detonation – feedforward inhibition in the CA3 hippocampus , 2003, Trends in Neurosciences.

[54]  D. Kullmann,et al.  GABA and GABAA receptors at hippocampal mossy fibre synapses , 2003, The European journal of neuroscience.

[55]  C. Meshul,et al.  Immunocytochemical analysis of glutamate and GABA in hippocampus of genetic absence epilepsy rats (GAERS) , 2003, Brain Research.

[56]  R. Gutiérrez,et al.  Activity-dependent induction of multitransmitter signaling onto pyramidal cells and interneurons of hippocampal area CA3. , 2003, Journal of neurophysiology.

[57]  R. Gutiérrez,et al.  Glutamic acid decarboxylase (GAD)67, but not GAD65, is constitutively expressed during development and transiently overexpressed by activity in the granule cells of the rat , 2003, Neuroscience Letters.

[58]  D. Kullmann,et al.  Plasticity of GABAB Receptor-Mediated Heterosynaptic Interactions at Mossy Fibers After Status Epilepticus , 2003, The Journal of Neuroscience.

[59]  R. Gutiérrez,et al.  Plasticity of the GABAergic Phenotype of the “Glutamatergic” Granule Cells of the Rat Dentate Gyrus , 2003, The Journal of Neuroscience.

[60]  D. Kullmann,et al.  GABAA Receptors at Hippocampal Mossy Fibers , 2003, Neuron.

[61]  G. Sperk,et al.  Expression of plasma membrane GABA transporters but not of the vesicular GABA transporter in dentate granule cells after kainic acid seizures , 2003, Hippocampus.

[62]  Y. Yanagawa,et al.  Mouse vesicular GABA transporter gene: genomic organization, transcriptional regulation and chromosomal localization. , 2003, Brain research. Molecular brain research.

[63]  R. Gutiérrez The GABAergic phenotype of the “glutamatergic” granule cells of the dentate gyrus , 2003, Progress in Neurobiology.

[64]  Istvan Mody,et al.  Altered Expression of the δ Subunit of the GABAA Receptor in a Mouse Model of Temporal Lobe Epilepsy , 2004, The Journal of Neuroscience.

[65]  C. Ribak,et al.  Astrocytic processes compensate for the apparent lack of GABA transporters in the axon terminals of cerebellar Purkinje cells , 1996, Anatomy and Embryology.

[66]  Jonathan G. Godwin,et al.  Dual-Phenotype GABA/Glutamate Neurons in Adult Preoptic Area: Sexual Dimorphism and Function , 2004, The Journal of Neuroscience.

[67]  J. Storm-Mathisen,et al.  GABAergic synapses in hippocampus exocytose aspartate on to NMDA receptors: quantitative immunogold evidence for co-transmission , 2004, Molecular and Cellular Neuroscience.

[68]  E. Cherubini,et al.  GABA-mediated giant depolarizing potentials as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Nicholas C. Spitzer,et al.  Activity-dependent homeostatic specification of transmitter expression in embryonic neurons , 2004, Nature.

[70]  A. Roberts,et al.  Glutamate and acetylcholine corelease at developing synapses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Yasuhiko Saito,et al.  Membrane and firing properties of glutamatergic and GABAergic neurons in the rat medial vestibular nucleus. , 2004, Journal of neurophysiology.

[72]  Urs Gerber,et al.  A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit , 2004, Nature.

[73]  C. Yamamoto Activation of hippocampal neurons by mossy fiber stimulation in thin brain sections in vitro , 2004, Experimental Brain Research.

[74]  D. Kullmann,et al.  Tonically active GABAA receptors: modulating gain and maintaining the tone , 2004, Trends in Neurosciences.

[75]  N. Spitzer,et al.  Homeostatic activity-dependent paradigm for neurotransmitter specification. , 2005, Cell calcium.

[76]  Dietmar Schmitz,et al.  Synaptic plasticity at hippocampal mossy fibre synapses , 2005, Nature Reviews Neuroscience.

[77]  R. Gutiérrez,et al.  Blockade of the membranal GABA transporter potentiates GABAergic responses evoked in pyramidal cells by mossy fiber activation after seizures , 2005, Hippocampus.

[78]  M. Treviño,et al.  The GABAergic projection of the dentate gyrus to hippocampal area CA3 of the rat: pre‐ and postsynaptic actions after seizures , 2005, The Journal of physiology.

[79]  R. Gutiérrez,et al.  Programmed and Induced Phenotype of the Hippocampal Granule Cells , 2005, The Journal of Neuroscience.

[80]  D. C. Gillespie,et al.  Inhibitory synapses in the developing auditory system are glutamatergic , 2005, Nature Neuroscience.

[81]  J. Bekkers Presynaptically Silent GABA Synapses in Hippocampus , 2005, The Journal of Neuroscience.

[82]  E. Cherubini,et al.  GABAergic Signaling at Mossy Fiber Synapses in Neonatal Rat Hippocampus , 2006, The Journal of Neuroscience.

[83]  Co-existence of GABA and Glu in the hippocampal granule cells: implications for epilepsy. , 2006, Current topics in medicinal chemistry.

[84]  R. Edwards,et al.  Functional implications of neurotransmitter co-release: glutamate and GABA share the load. , 2006, Current opinion in pharmacology.

[85]  D. Jaffe,et al.  Mossy fiber synaptic transmission: communication from the dentate gyrus to area CA3. , 2007, Progress in brain research.

[86]  Masahiko Watanabe,et al.  Evidence against GABA Release from Glutamatergic Mossy Fiber Terminals in the Developing Hippocampus , 2007, The Journal of Neuroscience.

[87]  M. Treviño,et al.  β/γ Oscillatory Activity in the CA3 Hippocampal Area is Depressed by Aberrant GABAergic Transmission from the Dentate Gyrus after Seizures , 2007, The Journal of Neuroscience.