TRIC: a simple but sophisticated 3-node triangular element based on 6 rigid-body and 12 straining modes for fast computational simulations of arbitrary isotropic and laminated composite shells

[1]  Tadahiko Kawai,et al.  Analysis of large deflection of plates by the finite element method , 1969 .

[2]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[3]  John Argyris,et al.  A simple triangular facet shell element with applications to linear and non-linear equilibrium and elastic stability problems , 1977 .

[4]  K. P. Rao,et al.  A rectangular laminated anisotropic shallow thin shell finite element , 1978 .

[5]  John Argyris,et al.  On an unconventional but natural formation of a stiffness matrix , 1980 .

[6]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[7]  David R. Owen,et al.  Anisotropic elasto-plastic finite element analysis of thick and thin plates and shells , 1983 .

[8]  J. N. Reddy,et al.  Analysis of laminated composite plates using a higher‐order shear deformation theory , 1985 .

[9]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[10]  Ted Belytschko,et al.  Resultant-stress degenerated-shell element , 1986 .

[11]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[12]  Ted Belytschko,et al.  Assumed strain stabilization procedure for the 9-node Lagrange shell element , 1989 .

[13]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[14]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[15]  J. Argyris,et al.  An efficient and locking-free flat anisotropic plate and shell triangular element , 1994 .

[16]  J. Argyris,et al.  A practicable and locking-free laminated shallow shell triangular element of varying and adaptable curvature , 1994 .

[17]  T. Belytschko,et al.  Physical stabilization of the 4-node shell element with one point quadrature , 1994 .

[18]  John Argyris,et al.  Natural Mode Method: A Practicable and Novel Approach to the Global Analysis of Laminated Composite Plates and Shells , 1996 .