Cryptic prophages as targets for drug development.

Bacterial chromosomes may contain up to 20% phage DNA that encodes diverse proteins ranging from those for photosynthesis to those for autoimmunity; hence, phages contribute greatly to the metabolic potential of pathogens. Active prophages carrying genes encoding virulence factors and antibiotic resistance can be excised from the host chromosome to form active phages and are transmissible among different bacterial hosts upon SOS responses. Cryptic prophages are artifacts of mutagenesis in which lysogenic phage are captured in the bacterial chromosome: they may excise but they do not form active phage particles or lyse their captors. Hence, cryptic prophages are relatively permanent reservoirs of genes, many of which benefit pathogens, in ways we are just beginning to discern. Here we explore the role of active prophage- and cryptic prophage-derived proteins in terms of (i) virulence, (ii) antibiotic resistance, and (iii) antibiotic tolerance; antibiotic tolerance occurs as a result of the non-heritable phenotype of dormancy which is a result of activation of toxins of toxin/antitoxin loci that are frequently encoded in cryptic prophages. Therefore, cryptic prophages are promising targets for drug development.

[1]  H. Brüssow,et al.  Phage-Host Interaction: an Ecological Perspective , 2004, Journal of bacteriology.

[2]  M. Waldor,et al.  Human Neutrophils and Their Products Induce Shiga Toxin Production by Enterohemorrhagic Escherichia coli , 2001, Infection and Immunity.

[3]  P. Salamon,et al.  Metagenomic Analyses of an Uncultured Viral Community from Human Feces , 2003, Journal of bacteriology.

[4]  Wolf-Dietrich Hardt,et al.  Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion , 2004, Microbiology and Molecular Biology Reviews.

[5]  T. Wood,et al.  Combatting bacterial infections by killing persister cells with mitomycin C. , 2015, Environmental microbiology.

[6]  Huang,et al.  Characterization of a bacteriophage that carries the genes for production of Shiga-like toxin 1 in Escherichia coli , 1987, Journal of bacteriology.

[7]  D. Maneval,et al.  A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria , 1999, Nature.

[8]  K. Lewis,et al.  A new antibiotic kills pathogens without detectable resistance , 2015, Nature.

[9]  L. Bossi,et al.  Inducible prophages contribute to Salmonella virulence in mice , 1999, Molecular microbiology.

[10]  Graham F Hatfull,et al.  Bacteriophage genomics. , 2008, Current opinion in microbiology.

[11]  Robert Barber,et al.  Prophage Finder: A Prophage Loci Prediction Tool for Prokaryotic Genome Sequences , 2006, Silico Biol..

[12]  T. Wood,et al.  Toxin-Antitoxin Systems Influence Biofilm and Persister Cell Formation and the General Stress Response , 2011, Applied and Environmental Microbiology.

[13]  Xuan-xian Peng,et al.  Identification and network of outer membrane proteins regulating streptomysin resistance in Escherichia coli. , 2008, Journal of proteome research.

[14]  K. Gerdes,et al.  The Escherichia coli relBE genes belong to a new toxin–antitoxin gene family , 1998, Molecular microbiology.

[15]  Roger W. Hendrix,et al.  Phage Genomics Small Is Beautiful , 2002, Cell.

[16]  C. Médigue,et al.  Characterization of a P1-Like Bacteriophage Carrying an SHV-2 Extended-Spectrum β-Lactamase from an Escherichia coli Strain , 2014, Antimicrobial Agents and Chemotherapy.

[17]  Alexandre M. Anesio,et al.  Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions , 2015, Front. Microbiol..

[18]  J. Hacker,et al.  Pathogenicity islands and the evolution of microbes. , 2000, Annual review of microbiology.

[19]  H. Hama-Inaba,et al.  Cloning and characterization of the mvrC gene of Escherichia coli K-12 which confers resistance against methyl viologen toxicity. , 1992, Nucleic acids research.

[20]  M. Hattori,et al.  Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. , 2001, DNA research : an international journal for rapid publication of reports on genes and genomes.

[21]  M. Skurnik,et al.  A Novel Erythromycin Resistance Methylase Gene (ermTR) in Streptococcus pyogenes , 1998, Antimicrobial Agents and Chemotherapy.

[22]  R. Feiner,et al.  A new perspective on lysogeny: prophages as active regulatory switches of bacteria , 2015, Nature Reviews Microbiology.

[23]  M. Waldor,et al.  Characterization of a higBA Toxin-Antitoxin Locus in Vibrio cholerae , 2006, Journal of bacteriology.

[24]  D. McDougald,et al.  The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage , 2009, The ISME Journal.

[25]  Michael J. McAnulty,et al.  RalR (a DNase) and RalA (a small RNA) form a type I toxin–antitoxin system in Escherichia coli , 2014, Nucleic acids research.

[26]  J. Jofre,et al.  Quinolone resistance genes (qnrA and qnrS) in bacteriophage particles from wastewater samples and the effect of inducing agents on packaged antibiotic resistance genes. , 2014, The Journal of antimicrobial chemotherapy.

[27]  K. Rajakumar,et al.  Role of attP in Integrase-Mediated Integration of the Shigella Resistance Locus Pathogenicity Island of Shigella flexneri , 2004, Antimicrobial Agents and Chemotherapy.

[28]  M. Waldor,et al.  Site‐specific integration of the conjugal Vibrio cholerae SXT element into prfC , 1999, Molecular microbiology.

[29]  H. Ochman,et al.  Molecular archaeology of the Escherichia coli genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  L. Barksdale,et al.  Persisting bacteriophage infections, lysogeny, and phage conversions. , 1974, Annual review of microbiology.

[31]  Matthew K. Waldor,et al.  Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin , 1996, Science.

[32]  Neil Woodford,et al.  The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter , 2006 .

[33]  F. Repoila,et al.  Enterococcus faecalis Prophage Dynamics and Contributions to Pathogenic Traits , 2013, PLoS genetics.

[34]  T. Wood,et al.  Antimicrobial properties of the Escherichia coli R1 plasmid host killing peptide. , 2003, Journal of biotechnology.

[35]  F. Macian,et al.  The Escherichia coli trmE (mnmE) gene, involved in tRNA modification, codes for an evolutionarily conserved GTPase with unusual biochemical properties , 1999, The EMBO journal.

[36]  V. Perreten,et al.  The New Macrolide-Lincosamide-Streptogramin B Resistance Gene erm(45) Is Located within a Genomic Island in Staphylococcus fleurettii , 2015, Antimicrobial Agents and Chemotherapy.

[37]  Alfred Goldberg,et al.  Lassomycin, a ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. , 2014, Chemistry & biology.

[38]  S. Lemire,et al.  Escherichia coli rnlA and rnlB Compose a Novel Toxin–Antitoxin System , 2011, Genetics.

[39]  Heather K. Allen,et al.  Antibiotics in Feed Induce Prophages in Swine Fecal Microbiomes , 2011, mBio.

[40]  Elizabeth M Glass,et al.  MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function. , 2016, Methods in molecular biology.

[41]  Gerald B. Pier,et al.  Lung Infections Associated with Cystic Fibrosis , 2002, Clinical Microbiology Reviews.

[42]  K. Gerdes,et al.  RelE, a global inhibitor of translation, is activated during nutritional stress , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Javier Arsuaga,et al.  Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli , 2004, Genome Biology.

[44]  S. Amyes,et al.  The role of the SOS response in bacteria exposed to zidovudine or trimethoprim. , 1991, Journal of medical microbiology.

[45]  T. Takeda Early use of fosfomycin for Shiga Toxin-Producing Escherichia coli O157 infection reduces the risk of Hemolytic-Uremic syndrome , 1998 .

[46]  K. Gerdes,et al.  Retraction Notice to: (p)ppGpp Controls Bacterial Persistence by Stochastic Induction of Toxin-Antitoxin Activity , 2018, Cell.

[47]  Jie Feng,et al.  Drug Combinations against Borrelia burgdorferi Persisters In Vitro: Eradication Achieved by Using Daptomycin, Cefoperazone and Doxycycline , 2015, PloS one.

[48]  V. Ramakrishnan,et al.  The Structural Basis for mRNA Recognition and Cleavage by the Ribosome-Dependent Endonuclease RelE , 2009, Cell.

[49]  B. Davis,et al.  Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXphi. , 2000, Science.

[50]  T. Wood,et al.  Persistence Increases in the Absence of the Alarmone Guanosine Tetraphosphate by Reducing Cell Growth , 2016, Scientific Reports.

[51]  V. Sharma,et al.  Collateral Effects of Antibiotics: Carbadox and Metronidazole Induce VSH-1 and Facilitate Gene Transfer among Brachyspira hyodysenteriae Strains , 2008, Applied and Environmental Microbiology.

[52]  S. Hyder,et al.  Transfer of erythromycin resistance from clinically isolated lysogenic strains of Streptococcus pyogenes via their endogenous phage. , 1978, The Journal of infectious diseases.

[53]  John W. Beaber,et al.  SOS response promotes horizontal dissemination of antibiotic resistance genes , 2004, Nature.

[54]  N. Groman EVIDENCE FOR THE INDUCED NATURE OF THE CHANGE FROM NONTOXIGENICITY TO TOXIGENICITY IN CORYNEBACTERIUM DIPHTHERIAE AS A RESULT OF EXPOSURE TO SPECIFIC BACTERIOPHAGE , 1953, Journal of bacteriology.

[55]  C. Wolz,et al.  Ciprofloxacin and Trimethoprim Cause Phage Induction and Virulence Modulation in Staphylococcus aureus , 2006, Antimicrobial Agents and Chemotherapy.

[56]  J. Costerton,et al.  Microbial Biofilms , 2011 .

[57]  S. Bearson,et al.  Chloramphenicol and tetracycline decrease motility and increase invasion and attachment gene expression in specific isolates of multidrug-resistant Salmonella enterica serovar Typhimurium , 2015, Front. Microbiol..

[58]  V. J. Freeman,et al.  STUDIES ON THE VIRULENCE OF BACTERIOPHAGE-INFECTED STRAINS OF CORYNEBACTERIUM DIPHTHERIAE , 1951, Journal of bacteriology.

[59]  T. Wood,et al.  DNA‐crosslinker cisplatin eradicates bacterial persister cells , 2016, Biotechnology and bioengineering.

[60]  Stephen Lory,et al.  MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands , 2007, Nucleic Acids Res..

[61]  G. Węgrzyn,et al.  Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157:H7. , 2010, FEMS immunology and medical microbiology.

[62]  V. Nagaraja,et al.  Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense , 2013, Microbiology and Molecular Reviews.

[63]  in chief George M. Garrity Bergey’s Manual® of Systematic Bacteriology , 1989, Springer New York.

[64]  Forest Rohwer,et al.  Viruses in the fecal microbiota of monozygotic twins and their mothers , 2010, Nature.

[65]  T. Wood,et al.  Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms , 2009, The ISME Journal.

[66]  S. Gottesman,et al.  Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM‐yoeB toxin‐antitoxin system , 2004, Molecular microbiology.

[67]  Nicole Dubilier,et al.  Microbiology: Create a global microbiome effort , 2015, Nature.

[68]  Thomas K. Wood,et al.  Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H‐NS of Escherichia coli , 2010, Microbial biotechnology.

[69]  M. Inouye,et al.  Regulation of growth and death in Escherichia coli by toxin–antitoxin systems , 2011, Nature Reviews Microbiology.

[70]  N. W. Davis,et al.  Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 , 2001, Nature.

[71]  Kelly P Williams,et al.  Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. , 2002, Nucleic acids research.

[72]  S. Egan,et al.  Biofilm Development and Cell Death in the Marine Bacterium Pseudoalteromonas tunicata , 2004, Applied and Environmental Microbiology.

[73]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[74]  Ghislain Fournous,et al.  Prophage Genomics , 2003, Microbiology and Molecular Biology Reviews.

[75]  S. Rosenberg,et al.  Antibiotic-induced lateral transfer of antibiotic resistance. , 2004, Trends in microbiology.

[76]  M. Inouye,et al.  YeeV is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins, FtsZ and MreB , 2011, Molecular microbiology.

[77]  T. Wood Combatting bacterial persister cells , 2016, Biotechnology and bioengineering.

[78]  Tetsuya Hayashi,et al.  The Defective Prophage Pool of Escherichia coli O157: Prophage–Prophage Interactions Potentiate Horizontal Transfer of Virulence Determinants , 2009, PLoS pathogens.

[79]  D. Acheson,et al.  Regulation of the Shiga-like toxin II operon in Escherichia coli , 1996, Infection and immunity.

[80]  K. Gerdes,et al.  RETRACTED: (p)ppGpp Controls Bacterial Persistence by Stochastic Induction of Toxin-Antitoxin Activity , 2013, Cell.

[81]  K. Gerdes,et al.  Bacterial toxin RelE induces apoptosis in human cells , 2002, FEBS letters.

[82]  David S. Wishart,et al.  PHAST: A Fast Phage Search Tool , 2011, Nucleic Acids Res..

[83]  T. Wood,et al.  Physiological Function of Rac Prophage During Biofilm Formation and Regulation of Rac Excision in Escherichia coli K-12 , 2015, Scientific Reports.

[84]  Sheng-He Huang,et al.  Escherichia coli outer membrane protease OmpT confers resistance to urinary cationic peptides , 2010, Microbiology and immunology.

[85]  J. Jofre,et al.  Antibiotic Resistance Genes in the Bacteriophage DNA Fraction of Environmental Samples , 2011, PloS one.

[86]  M. Kumar,et al.  Identification of biochemical and putative biological role of a xenolog from Escherichia coli using structural analysis , 2011, Proteins.

[87]  H. Deveau,et al.  CRISPR/Cas system and its role in phage-bacteria interactions. , 2010, Annual review of microbiology.

[88]  K. Gerdes,et al.  Prokaryotic toxin–antitoxin stress response loci , 2005, Nature Reviews Microbiology.

[89]  Axel Schambach,et al.  Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity , 2016, Nature Biotechnology.

[90]  K. Gerdes,et al.  Bacterial persistence by RNA endonucleases , 2011, Proceedings of the National Academy of Sciences.

[91]  Qun Ma,et al.  Cryptic prophages help bacteria cope with adverse environments , 2010, Nature communications.

[92]  M. Waldor,et al.  Transcription of the Toxin Genes Present within the Staphylococcal Phage φSa3ms Is Intimately Linked with the Phage's Life Cycle , 2003, Journal of bacteriology.

[93]  M. Waldor,et al.  Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. , 2000, The Journal of infectious diseases.

[94]  Jason M. Brown,et al.  A Novel Family of Escherichia coli Toxin-Antitoxin Gene Pairs , 2003, Journal of bacteriology.

[95]  W. Patrick,et al.  Artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli , 2010, Proceedings of the National Academy of Sciences.

[96]  S. Shapiro Speculative strategies for new antibacterials: all roads should not lead to Rome , 2013, The Journal of Antibiotics.

[97]  M. Pallen,et al.  Bacterial copper‐ and zinc‐cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis , 1997, Molecular microbiology.

[98]  R. Holmes,et al.  Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. , 1984, Science.

[99]  M. Inouye,et al.  YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli , 2012, Molecular microbiology.

[100]  Susana Campoy,et al.  β-Lactam Antibiotics Induce the SOS Response and Horizontal Transfer of Virulence Factors in Staphylococcus aureus , 2006, Journal of bacteriology.

[101]  Dean P. Jones,et al.  Commensal bacteria modulate cullin‐dependent signaling via generation of reactive oxygen species , 2007, The EMBO journal.

[102]  Nuria Quiles-Puchalt,et al.  Bacteriophage-mediated spread of bacterial virulence genes. , 2015, Current opinion in microbiology.

[103]  Matthew K. Waldor,et al.  Bacteriophage Control of Bacterial Virulence , 2002, Infection and Immunity.

[104]  K. Lewis,et al.  Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli , 2004, Journal of bacteriology.

[105]  J. Molnár,et al.  Inducement and Reversal of Tetracycline Resistance in Escherichia coli K-12 and Expression of Proton Gradient-Dependent Multidrug Efflux Pump Genes , 2005, Antimicrobial Agents and Chemotherapy.

[106]  S. Schuldiner,et al.  EmrE, an Escherichia coli 12-kDa Multidrug Transporter, Exchanges Toxic Cations and H+ and Is Soluble in Organic Solvents (*) , 1995, The Journal of Biological Chemistry.

[107]  E. Boedeker,et al.  A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[108]  K. Drlica,et al.  DNA gyrase, topoisomerase IV, and the 4-quinolones , 1997, Microbiology and molecular biology reviews : MMBR.

[109]  G. Moore,et al.  Transcriptional Profiling of Colicin-Induced Cell Death of Escherichia coli MG1655 Identifies Potential Mechanisms by Which Bacteriocins Promote Bacterial Diversity , 2004, Journal of bacteriology.

[110]  Harry L. T. Mobley,et al.  Pathogenic Escherichia coli , 2004, Nature Reviews Microbiology.

[111]  V. J. Freeman,et al.  STUDIES ON THE V ' IRULENCE OF BACTERIOPHAGE-INFECTED STRAINS OF CORYNEBACTERIUM , 2022 .

[112]  J. Jofre,et al.  Potential impact of environmental bacteriophages in spreading antibiotic resistance genes. , 2013, Future microbiology.

[113]  V. Perreten,et al.  The Novel Macrolide-Lincosamide-Streptogramin B Resistance Gene erm(44) Is Associated with a Prophage in Staphylococcus xylosus , 2014, Antimicrobial Agents and Chemotherapy.

[114]  J. Sabina,et al.  Interfering with Different Steps of Protein SynthesisExplored by Transcriptional Profiling of Escherichia coliK-12 , 2003, Journal of bacteriology.

[115]  S. Kjelleberg,et al.  Cell Death in Pseudomonas aeruginosa Biofilm Development , 2003, Journal of bacteriology.

[116]  J. Collins,et al.  A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics , 2007, Cell.

[117]  K. Lewis,et al.  Borrelia burgdorferi, the Causative Agent of Lyme Disease, Forms Drug-Tolerant Persister Cells , 2015, Antimicrobial Agents and Chemotherapy.

[118]  Qun Ma,et al.  Antitoxin MqsA Helps Mediate the Bacterial General Stress Response , 2011, Nature chemical biology.

[119]  Matthew R. Laird,et al.  IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis , 2015, Nucleic Acids Res..

[120]  W. Chan,et al.  One cannot rule them all: Are bacterial toxins-antitoxins druggable? , 2015, FEMS microbiology reviews.

[121]  Richard D. Smith,et al.  Activated ClpP kills persisters and eradicates a chronic biofilm infection , 2013, Nature.

[122]  J. Brown,et al.  Transmissible Toxicogenicity of Streptococci. , 1927 .

[123]  M. Sekiguchi,et al.  Induction of Phage Formation in the Lysogenic Escherichia coli K-12 by Mitomycin C , 1959, Nature.