Quantitative relationships between composition, particle size, triple phase boundary length and surface area in nickel-cermet anodes for Solid Oxide Fuel Cells

The present study is focusing on the elaboration of the quantitative relationships between the primary microstructural parameters (i.e. the phase volume fractions Phi, the particle and pore sizes and the corresponding size distributions PSD) with the more complex topological features (triple phase boundary length TPBL, and specific surface area SSA) in porous Ni-cermet anodes. These relationships are crucial for the microstructure optimization and for the improvement of the corresponding electrode performance.

[1]  Robert J. Flatt,et al.  FIB-Nanotomography of Particulate Systems—Part II: Particle Recognition and Effect of Boundary Truncation , 2006 .

[2]  L. Gauckler,et al.  The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes , 2001 .

[3]  Marcio Gameiro,et al.  Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode , 2009 .

[4]  R. Wepf,et al.  3D-microstructure analysis of hydrated bentonite with cryo-stabilized pore water , 2010 .

[5]  E. Wachsman,et al.  Three-Dimensional Reconstruction of Porous LSCF Cathodes , 2007 .

[6]  John M. Vohs,et al.  Nanostructured anodes for solid oxide fuel cells , 2009 .

[7]  W. Bessler,et al.  The influence of equilibrium potential on the hydrogen oxidation kinetics of SOFC anodes , 2007 .

[8]  Konstantin Mischaikow,et al.  Three-Dimensional Analysis of Solid Oxide Fuel Cell Ni-YSZ Anode Interconnectivity , 2009, Microscopy and Microanalysis.

[9]  Francesco De Carlo,et al.  Nondestructive Nanoscale 3D Elemental Mapping and Analysis of a Solid Oxide Fuel Cell Anode , 2010 .

[10]  Anil V. Virkar,et al.  The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells , 2000 .

[11]  Paul Munroe,et al.  Three-Dimensional Microstructural Characterization Using Focused Ion Beam Tomography , 2007 .

[12]  A. Abbaspour,et al.  Three-dimensional random resistor-network model for solid oxide fuel cell composite electrodes , 2010 .

[13]  Mogens Bjerg Mogensen,et al.  6th European Solid Oxide Fuel Cell Forum , 2006 .

[14]  Krishnaswamy Nandakumar,et al.  Geometrical modeling of microstructure of solid oxide fuel cell composite electrodes , 2008 .

[15]  Meilin Liu,et al.  Triple-Phase Boundary and Surface Transport in Mixed Conducting Patterned Electrodes , 2008 .

[16]  W. Bessler,et al.  Modelling Study of Surface Reactions, Diffusion, and Spillover at a Ni/YSZ Patterned Anode , 2009 .

[17]  Jon G. Pharoah,et al.  Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes , 2009 .

[18]  R. Kee,et al.  Modeling Distributed Charge-Transfer Processes in SOFC Membrane Electrode Assemblies , 2008 .

[19]  Lorenz Holzer,et al.  Contradicting Geometrical Concepts in Pore Size Analysis Attained with Electron Microscopy and Mercury Intrusion , 2008 .

[20]  J. Van herle,et al.  Nickel–Zirconia Anode Degradation and Triple Phase Boundary Quantification from Microstructural Analysis , 2009 .

[21]  P. Shearing,et al.  3D reconstruction of SOFC anodes using a focused ion beam lift-out technique , 2009 .

[22]  Shenmin Zhang,et al.  A stochastic geometry based model for total triple phase boundary length in composite cathodes for solid oxide fuel cells , 2009 .

[23]  B. Münch,et al.  Toward Reproducible Three-Dimensional Microstructure Analysis of Granular Materials and Complex Suspensions , 2009, Microscopy and Microanalysis.

[24]  Nobuhide Kasagi,et al.  Numerical Assessment of SOFC Anode Polarization Based on Three-Dimensional Model Microstructure Reconstructed from FIB-SEM Images , 2010 .

[25]  Hiroshi Iwai,et al.  Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique , 2010 .

[26]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[27]  Andrew M. Colclasure,et al.  Modeling Electrochemical Oxidation of Hydrogen on Ni–YSZ Pattern Anodes , 2009 .

[28]  B Münch,et al.  Three‐dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography , 2004, Journal of microscopy.

[29]  Jacob Brouwer,et al.  Percolation modeling investigation of TPB formation in a solid oxide fuel cell electrode–electrolyte interface , 2008 .

[30]  W. Lehnert,et al.  Statistical geometry of reaction space in porous cermet anodes based on ion-conducting electrolytes: Patterns of degradation , 1999 .

[31]  Robert J. Flatt,et al.  FIB-Nanotomography of Particulate Systems—Part I: Particle Shape and Topology of Interfaces , 2006 .