Hydrogen Production from Ethanol Decomposition by Two Microwave Atmospheric Pressure Plasma Sources: Surfatron and TIAGO Torch

Molecular hydrogen production from ethanol decomposition by two microwave atmospheric pressure plasma sources (surfatron and Torche a Injection Axiale sur Guide d’Onde (TIAGO) torch) was studied by optical emission spectroscopy and mass spectrometry. In both cases ethanol was almost completely decomposed, thus giving place to molecular hydrogen. However, the atmosphere surrounding the discharge significantly influences the overall decomposition process. When the surfatron is used, C2H2 and CO are obtained as exhaust gases. Likewise, H2O and HCN are also detected at plasma exit when sustained with the TIAGO torch.

[1]  Z. Zakrzewski,et al.  Waveguide-based single and multiple nozzle plasma torches: the TIAGO concept , 2001 .

[2]  Hyun-Ha Kim,et al.  Nonthermal Plasma Processing for Air‐Pollution Control: A Historical Review, Current Issues, and Future Prospects , 2004 .

[3]  J. Sentek,et al.  The hybrid plasma–catalytic process for non-oxidative methane coupling to ethylene and ethane , 2009 .

[4]  Marco A. Gigosos,et al.  New plasma diagnosis tables of hydrogen Stark broadening including ion dynamics , 1996 .

[5]  E. Tatarova,et al.  Large-scale Ar and N2–Ar microwave plasma sources , 2006 .

[6]  Michel Moisan,et al.  An atmospheric pressure waveguide-fed microwave plasma torch: the TIA design , 1994 .

[7]  Bradley T. Jones,et al.  Inductively Coupled Plasma Optical Emission Spectrometry , 2008 .

[8]  Z. Zakrzewski,et al.  Abatement of perfluorinated compounds using microwave plasmas at atmospheric pressure , 2003 .

[9]  M. Calzada,et al.  Study on the reforming of alcohols in a surface wave discharge (SWD) at atmospheric pressure , 2008 .

[10]  J. Benedikt Plasma-chemical reactions: low pressure acetylene plasmas , 2010 .

[11]  E. Tatarova,et al.  Microwave plasma torches driven by surface wave applied for hydrogen production , 2011 .

[12]  M. Najjari,et al.  New modeling of the power diode using the VHDL-AMS language , 2008 .

[13]  P. Soltanpour,et al.  Inductively Coupled Plasma Emission Spectrometry and Inductively Coupled Plasma-Mass Spectrometry , 2018, SSSA Book Series.

[14]  J. L. Hueso,et al.  Reforming of ethanol in a microwave surface-wave plasma discharge , 2004 .

[15]  R. Rincón,et al.  Spectroscopic characterization of atmospheric pressure argon plasmas sustained with the Torche à Injection Axiale sur Guide d'Ondes , 2013 .

[16]  J. Cotrino,et al.  Spectroscopic determination of fundamental parameters in an argon microwave-induced plasma (surfatron) at atmospheric pressure , 1992 .

[17]  H. Takikawa,et al.  Carbon-Nanotube Growth in Alcohol-Vapor Plasma , 2009, IEEE Transactions on Plasma Science.

[18]  G. Dilecce,et al.  N 2 とO 2 によるN 2 + (B 2 Σ u + ,ν=0)の衝突消光と窒素スペクトル帯の強度比によるE/N測定に及ぼす影響 , 2010 .

[19]  K. O’Grady,et al.  柔軟記録媒体のための金属粒子(MP)技術の開発 , 2008 .

[20]  A. Rodero,et al.  The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 1. Plasmas at atmospheric pressure , 1998 .

[21]  C. Jiménez-Sanchidrián,et al.  Transformation of light paraffins in a microwave-induced plasma-based reactor at reduced pressure , 2010 .

[22]  J. Margot,et al.  Experimental study of a helium surface-wave discharge at atmospheric pressure , 2010 .

[23]  Michel Moisan,et al.  A Small Microwave Plasma Source for Long Column Production without Magnetic Field , 1975, IEEE Transactions on Plasma Science.

[24]  M. Moisan,et al.  Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface‐wave‐sustained discharge at atmospheric pressure , 1996 .

[25]  Wing Tsang,et al.  Chemical Kinetic Data Base for Propellant Combustion. II. Reactions Involving CN, NCO, and HNCO , 1992 .

[26]  M. Sáez,et al.  Characterization and study of the thermodynamic equilibrium departure of an argon plasma flame produced by a surface-wave sustained discharge , 2000 .

[27]  M. Dimitrijević,et al.  Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure , 2007 .