Hydrogen Production from Ethanol Decomposition by Two Microwave Atmospheric Pressure Plasma Sources: Surfatron and TIAGO Torch
暂无分享,去创建一个
Margarita Jiménez | R. Rincón | J. Muñoz | M. Sáez | M. Calzada | Rocío Rincón | José Muñoz | M. Saez | María Dolores Calzada | M. Jiménez
[1] Z. Zakrzewski,et al. Waveguide-based single and multiple nozzle plasma torches: the TIAGO concept , 2001 .
[2] Hyun-Ha Kim,et al. Nonthermal Plasma Processing for Air‐Pollution Control: A Historical Review, Current Issues, and Future Prospects , 2004 .
[3] J. Sentek,et al. The hybrid plasma–catalytic process for non-oxidative methane coupling to ethylene and ethane , 2009 .
[4] Marco A. Gigosos,et al. New plasma diagnosis tables of hydrogen Stark broadening including ion dynamics , 1996 .
[5] E. Tatarova,et al. Large-scale Ar and N2–Ar microwave plasma sources , 2006 .
[6] Michel Moisan,et al. An atmospheric pressure waveguide-fed microwave plasma torch: the TIA design , 1994 .
[7] Bradley T. Jones,et al. Inductively Coupled Plasma Optical Emission Spectrometry , 2008 .
[8] Z. Zakrzewski,et al. Abatement of perfluorinated compounds using microwave plasmas at atmospheric pressure , 2003 .
[9] M. Calzada,et al. Study on the reforming of alcohols in a surface wave discharge (SWD) at atmospheric pressure , 2008 .
[10] J. Benedikt. Plasma-chemical reactions: low pressure acetylene plasmas , 2010 .
[11] E. Tatarova,et al. Microwave plasma torches driven by surface wave applied for hydrogen production , 2011 .
[12] M. Najjari,et al. New modeling of the power diode using the VHDL-AMS language , 2008 .
[13] P. Soltanpour,et al. Inductively Coupled Plasma Emission Spectrometry and Inductively Coupled Plasma-Mass Spectrometry , 2018, SSSA Book Series.
[14] J. L. Hueso,et al. Reforming of ethanol in a microwave surface-wave plasma discharge , 2004 .
[15] R. Rincón,et al. Spectroscopic characterization of atmospheric pressure argon plasmas sustained with the Torche à Injection Axiale sur Guide d'Ondes , 2013 .
[16] J. Cotrino,et al. Spectroscopic determination of fundamental parameters in an argon microwave-induced plasma (surfatron) at atmospheric pressure , 1992 .
[17] H. Takikawa,et al. Carbon-Nanotube Growth in Alcohol-Vapor Plasma , 2009, IEEE Transactions on Plasma Science.
[18] G. Dilecce,et al. N 2 とO 2 によるN 2 + (B 2 Σ u + ,ν=0)の衝突消光と窒素スペクトル帯の強度比によるE/N測定に及ぼす影響 , 2010 .
[19] K. O’Grady,et al. 柔軟記録媒体のための金属粒子(MP)技術の開発 , 2008 .
[20] A. Rodero,et al. The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 1. Plasmas at atmospheric pressure , 1998 .
[21] C. Jiménez-Sanchidrián,et al. Transformation of light paraffins in a microwave-induced plasma-based reactor at reduced pressure , 2010 .
[22] J. Margot,et al. Experimental study of a helium surface-wave discharge at atmospheric pressure , 2010 .
[23] Michel Moisan,et al. A Small Microwave Plasma Source for Long Column Production without Magnetic Field , 1975, IEEE Transactions on Plasma Science.
[24] M. Moisan,et al. Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface‐wave‐sustained discharge at atmospheric pressure , 1996 .
[25] Wing Tsang,et al. Chemical Kinetic Data Base for Propellant Combustion. II. Reactions Involving CN, NCO, and HNCO , 1992 .
[26] M. Sáez,et al. Characterization and study of the thermodynamic equilibrium departure of an argon plasma flame produced by a surface-wave sustained discharge , 2000 .
[27] M. Dimitrijević,et al. Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure , 2007 .