Period-doubling cascades of canards from the extended Bonhoeffer–van der Pol oscillator

Abstract This Letter investigates the period-doubling cascades of canards, generated in the extended Bonhoeffer–van der Pol oscillator. Canards appear by Andronov–Hopf bifurcations (AHBs) and it is confirmed that these AHBs are always supercritical in our system. The cascades of period-doubling bifurcation are followed by mixed-mode oscillations. The detailed two-parameter bifurcation diagrams are derived, and it is clarified that the period-doubling bifurcations arise from a narrow parameter value range at which the original canard in the non-extended equation is observed.

[1]  Rustam Singh,et al.  Simulating , 2012 .

[2]  A. Zvonkin,et al.  Non-standard analysis and singular perturbations of ordinary differential equations , 1984 .

[3]  Francesco Marin,et al.  Chaotically spiking canards in an excitable system with 2D inertial fast manifolds. , 2007, Physical review letters.

[4]  Joseph W. Durham,et al.  Feedback control of canards. , 2008, Chaos.

[5]  A. Zhabotinsky A history of chemical oscillations and waves. , 1991, Chaos.

[6]  John Guckenheimer,et al.  Numerical Computation of Canards , 2000, Int. J. Bifurc. Chaos.

[7]  Georgi S. Medvedev,et al.  Multimodal regimes in a compartmental model of the dopamine neuron , 2004 .

[8]  Georgi Medvedev,et al.  Multimodal oscillations in systems with strong contraction , 2007 .

[9]  Nancy Kopell,et al.  Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example , 2008, SIAM J. Appl. Dyn. Syst..

[10]  B. M. Fulk MATH , 1992 .

[11]  Marc Diener,et al.  The canard unchainedor how fast/slow dynamical systems bifurcate , 1984 .

[12]  Georgi S Medvedev,et al.  Chaos at the border of criticality. , 2007, Chaos.

[13]  Shinji Doi,et al.  Noise-induced slow spiking and ISI variability in a simple neuronal model , 2007 .

[14]  J. L. Hudson,et al.  An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov–Zhabotinskii reaction , 1979 .

[15]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[16]  Mark Schell,et al.  Mixed‐mode oscillations in an electrochemical system. II. A periodic–chaotic sequence , 1989 .

[17]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[18]  Valery Petrov,et al.  Mixed‐mode oscillations in chemical systems , 1992 .

[19]  Helwig Löffelmann,et al.  GEOMETRY OF MIXED-MODE OSCILLATIONS IN THE 3-D AUTOCATALATOR , 1998 .