Multi-interest User Profiling in Short Text Microblogs

[1]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[2]  Samir Chatterjee,et al.  A Design Science Research Methodology for Information Systems Research , 2008 .

[3]  Russel Pears,et al.  A Metamodel Enabled Approach for Discovery of Coherent Topics in Short Text Microblogs , 2018, IEEE Access.

[4]  Deniz Karatay,et al.  User Interest Modeling in Twitter with Named Entity Recognition , 2015, #MSM.

[5]  David Robinson,et al.  Detecting Hate Speech on Twitter Using a Convolution-GRU Based Deep Neural Network , 2018, ESWC.

[6]  Luís Velez Lapão,et al.  Implementing an online pharmaceutical service using design science research , 2017, BMC Medical Informatics and Decision Making.

[7]  Russel Pears,et al.  Follow-back Recommendations for Sports Bettors: A Twitter-based Approach , 2020, HICSS.

[8]  Hamid Hassanpour,et al.  User preferences modeling using dirichlet process mixture model for a content-based recommender system , 2019, Knowl. Based Syst..

[9]  Leonel Nóbrega,et al.  The MINDS Method , 2017 .

[10]  Koustuv Dasgupta,et al.  User interests in social media sites: an exploration with micro-blogs , 2009, CIKM.

[11]  Barry Smyth,et al.  CatStream: categorising tweets for user profiling and stream filtering , 2013, IUI '13.

[12]  Huan Liu,et al.  Is the Sample Good Enough? Comparing Data from Twitter's Streaming API with Twitter's Firehose , 2013, ICWSM.

[13]  Swapnil Mishra,et al.  Modeling Popularity in Asynchronous Social Media Streams with Recurrent Neural Networks , 2018, ICWSM.

[14]  Ravinder Kumar,et al.  Folksonomy-based user profile enrichment using clustering and community recommended tags in multiple levels , 2018, Neurocomputing.

[15]  Purnima Bholowalia,et al.  EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN , 2014 .

[16]  Stefano Faralli,et al.  Wiki-MID: A Very Large Multi-domain Interests Dataset of Twitter Users with Mappings to Wikipedia , 2018, SEMWEB.

[17]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[18]  Bo Jiang,et al.  Modeling Temporal Dynamics of User Interests in Online Social Networks , 2015, ICCS.

[19]  Xiaopeng Zhang,et al.  User modeling and usage profiling based on temporal posting behavior in OSNs , 2018, Online Soc. Networks Media.

[20]  Bofeng Zhang,et al.  Personalized recommendation based on hierarchical interest overlapping community , 2019, Inf. Sci..

[21]  Xiangliang Zhang,et al.  Dynamic Embeddings for User Profiling in Twitter , 2018, KDD.

[22]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[23]  Amit P. Sheth,et al.  Hierarchical interest graph from tweets , 2014, WWW.

[24]  Zhiguo Zhu,et al.  A graph-oriented model for hierarchical user interest in precision social marketing , 2019, Electron. Commer. Res. Appl..

[25]  Van-Nam Huynh,et al.  Using community preference for overcoming sparsity and cold-start problems in collaborative filtering system offering soft ratings , 2017, Electron. Commer. Res. Appl..

[26]  A. Viera,et al.  Understanding interobserver agreement: the kappa statistic. , 2005, Family medicine.

[27]  M. McHugh Interrater reliability: the kappa statistic , 2012, Biochemia medica.

[28]  Jia Li,et al.  Tweet modeling with LSTM recurrent neural networks for hashtag recommendation , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[29]  Stephen Shaoyi Liao,et al.  A new temporal and social PMF-based method to predict users' interests in micro-blogging , 2013, Decis. Support Syst..

[30]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[31]  Tomas Mikolov,et al.  Enriching Word Vectors with Subword Information , 2016, TACL.