RNA Secondary Structure Analysis Using RNAstructure

RNAstructure is a user‐friendly program for the prediction and analysis of RNA secondary structure. It is available as a Web server, as a program with a graphical user interface, or as a set of command‐line tools. The programs are available for Microsoft Windows, Macintosh OS X, or Linux. This unit provides protocols for RNA secondary structure prediction (using the Web server or the graphical user interface) and prediction of high‐affinity oligonucleotide biding sites to a structured RNA target (using the graphical user interface). Curr. Protoc. Bioinform. 46:12.6.1‐12.6.25. © 2014 by John Wiley & Sons, Inc.

[1]  D. Turner,et al.  A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation , 2006, Nucleic acids research.

[2]  M. Zuker On finding all suboptimal foldings of an RNA molecule. , 1989, Science.

[3]  C. Lawrence,et al.  A statistical sampling algorithm for RNA secondary structure prediction. , 2003, Nucleic acids research.

[4]  D. Turner,et al.  Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. , 1998, Biochemistry.

[5]  David H. Mathews,et al.  Multilign: an algorithm to predict secondary structures conserved in multiple RNA sequences , 2011, Bioinform..

[6]  E. Southern,et al.  Messenger RNA expression profiling of genes involved in epidermal growth factor receptor signalling in human cancer cells treated with scanning array-designed antisense oligonucleotides. , 2003, Biochemical pharmacology.

[7]  David H. Mathews,et al.  Fundamental differences in the equilibrium considerations for siRNA and antisense oligodeoxynucleotide design , 2008, Nucleic acids research.

[8]  Sean R. Eddy,et al.  Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction , 2004, BMC Bioinformatics.

[9]  David H. Mathews,et al.  A sequence similar to tRNA3Lys gene is embedded in HIV-1 U3/R and promotes minus strand transfer , 2009, Nature Structural &Molecular Biology.

[10]  D. Turner,et al.  Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. , 2002, Journal of molecular biology.

[11]  David H Mathews,et al.  Predicting helical coaxial stacking in RNA multibranch loops. , 2007, RNA.

[12]  Gaurav Sharma,et al.  Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign , 2007, BMC Bioinformatics.

[13]  D. Mathews,et al.  Stochastic sampling of the RNA structural alignment space , 2009, Nucleic acids research.

[14]  Yann Ponty,et al.  VARNA: Interactive drawing and editing of the RNA secondary structure , 2009, Bioinform..

[15]  David H. Mathews,et al.  RNAstructure: web servers for RNA secondary structure prediction and analysis , 2013, Nucleic Acids Res..

[16]  A D Tsodikov,et al.  Thermodynamic criteria for high hit rate antisense oligonucleotide design. , 2003, Nucleic acids research.

[17]  Harry A. Stern,et al.  Accelerating calculations of RNA secondary structure partition functions using GPUs , 2013, Algorithms for Molecular Biology.

[18]  E. Southern,et al.  The Efficacy of Small Interfering RNAs Targeted to the Type 1 Insulin-like Growth Factor Receptor (IGF1R) Is Influenced by Secondary Structure in the IGF1R Transcript* , 2003, The Journal of Biological Chemistry.

[19]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[20]  D. Turner,et al.  Predicting oligonucleotide affinity to nucleic acid targets. , 1999, RNA.

[21]  D. Mathews,et al.  Accurate SHAPE-directed RNA structure determination , 2009, Proceedings of the National Academy of Sciences.

[22]  K. Weeks,et al.  RNA structure analysis at single nucleotide resolution by selective 2'-hydroxyl acylation and primer extension (SHAPE). , 2005, Journal of the American Chemical Society.

[23]  David H Mathews,et al.  RNA pseudoknots: folding and finding , 2010, F1000 biology reports.

[24]  Michael Zuker,et al.  Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide , 1999 .

[25]  I. Kuntz,et al.  Tertiary Structure Prediction , 1989 .

[26]  David H. Mathews,et al.  OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics , 2008, Nucleic Acids Res..

[27]  D. Mathews,et al.  ProbKnot: fast prediction of RNA secondary structure including pseudoknots. , 2010, RNA.

[28]  Gaurav Sharma,et al.  TurboFold: Iterative probabilistic estimation of secondary structures for multiple RNA sequences , 2011, BMC Bioinformatics.

[29]  A. E. Walter,et al.  Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. Mathews,et al.  Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots , 2013, Proceedings of the National Academy of Sciences.

[31]  D. Mathews Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. , 2004, RNA.

[32]  D. Mathews,et al.  PARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction , 2008, Nucleic acids research.

[33]  H. Soifer,et al.  siRNA target site secondary structure predictions using local stable substructures , 2005, Nucleic acids research.

[34]  E Westhof,et al.  Isoalloxazine derivatives promote photocleavage of natural RNAs at G.U base pairs embedded within helices. , 1997, Nucleic acids research.

[35]  J. Ebel,et al.  Probing the structure of RNAs in solution. , 1987, Nucleic acids research.

[36]  David H. Mathews,et al.  Efficient siRNA selection using hybridization thermodynamics , 2007, Nucleic acids research.

[37]  Georg Sczakiel,et al.  The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. , 2003, Nucleic acids research.

[38]  David H. Mathews,et al.  RNAstructure: software for RNA secondary structure prediction and analysis , 2010, BMC Bioinformatics.

[39]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[40]  A. E. Walter,et al.  Thermodynamics of coaxially stacked helixes with GA and CC mismatches. , 1996, Biochemistry.

[41]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[42]  D. Mathews,et al.  Improved RNA secondary structure prediction by maximizing expected pair accuracy. , 2009, RNA.

[43]  James W. Brown The ribonuclease P database , 1998, Nucleic Acids Res..

[44]  Stefan L Ameres,et al.  The impact of target site accessibility on the design of effective siRNAs , 2008, Nature Biotechnology.

[45]  Feng Ding,et al.  On the significance of an RNA tertiary structure prediction. , 2010, RNA.

[46]  Sean R Eddy,et al.  How do RNA folding algorithms work? , 2004, Nature Biotechnology.

[47]  Michael Zuker,et al.  RNA Secondary Structure Prediction , 2007, Current protocols in nucleic acid chemistry.

[48]  David H. Mathews,et al.  Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change , 2006, BMC Bioinformatics.

[49]  D. Bartel,et al.  Phylogenetic analysis of tmRNA secondary structure. , 1996, RNA.

[50]  Rhiju Das,et al.  Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. , 2012, Biochemistry.

[51]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[52]  David H. Mathews,et al.  Predicting a set of minimal free energy RNA secondary structures common to two sequences , 2005, Bioinform..

[53]  E. Westhof,et al.  Topology of three-way junctions in folded RNAs. , 2006, RNA.

[54]  A D Baxevanis,et al.  Predictive methods using DNA sequences. , 2001, Methods of biochemical analysis.

[55]  G. Knapp Enzymatic approaches to probing of RNA secondary and tertiary structure. , 1989, Methods in enzymology.