Increase of ion kinetic temperature across a collisionless shock: 2. A simulation study

The present paper is a continuation of the preceding article (Lee et al., 1986) in which it is suggested that the nonadiabatic motion of the directly transmitted ions in a quasi-perpendicular shock wave can result in an increase of the ion kinetic temperature transverse to the ambient magnetic field in the downstream. A series of computer simulations based on a hybrid code have been carried out to examine the dynamics of the transmitted ions in both the subcritical and supercritical shock waves. It is found that in both cases the directly transmitted ions can contribute to the heating process. In the case of a resistiveless supercritical shock the reflected and transmitted ions can be equally important; whereas for a subcritical shock the transmitted ions are primarily responsible for the ion heating.

[1]  Lou‐Chuang Lee,et al.  Increase of ion kinetic temperature across a collisionless shock: I. A new mechanism , 1986 .

[2]  R. Chodura A hybrid fluid-particle model of ion heating in high-Mach-number shock waves , 1975 .

[3]  Z. Němeček,et al.  Ion distribution function dynamics near the strong shock front (Project Intershock) , 1986 .

[4]  P. Auer,et al.  THERMALIZATION IN THE EARTH'S BOW SHOCK. , 1971 .

[5]  J. Kan,et al.  Effects of electron pressure in quasi‐parallel collisionless shocks , 1985 .

[6]  J. Sakai,et al.  Ion acceleration in quasi‐perpendicular collisionless magnetosonic shock waves with subcritical Mach number , 1985 .

[7]  Jeremiah Brackbill,et al.  Collisionless dissipation processes in quasi‐parallel shocks , 1983 .

[8]  K. Papadopoulos,et al.  Microinstabilities associated with a high Mach number, perpendicular bow shock , 1984 .

[9]  N. A. Krall,et al.  Low-Frequency Instabilities in Magnetic Pulses , 1971 .

[10]  N. Sckopke,et al.  Observations of gyrating ions in the foot of the nearly perpendicular bow shock , 1982 .

[11]  A. Galeev Electron and ion heating at supercritical shocks , 1986 .

[12]  C. T. Dum,et al.  Turbulent Heating and Quenching of the Ion Sound Instability , 1974 .

[13]  N. Sckopke,et al.  Characteristics of reflected and diffuse ions upstream from the earth's bow shock , 1981 .

[14]  Charles C. Goodrich,et al.  Simulation of a perpendicular bow shock , 1981 .

[15]  C. Russell,et al.  A macroscopic profile of the typical quasi-perpendicular bow shock - Isee 1 and 2 , 1980 .

[16]  J. Freidberg,et al.  THEORY OF LAMINAR COLLISIONLESS SHOCKS. , 1971 .

[17]  V. Formisano THE PHYSICS OF THE EARTH'S COLLISIONLESS SHOCK WAVE , 1977 .

[18]  Motohiko Tanaka,et al.  Plasma heating at collisionless shocks due to the kinetic cross-field streaming instability , 1985 .

[19]  Charles C. Goodrich,et al.  The structure of perpendicular bow shocks , 1982 .

[20]  C. Russell,et al.  The resolved layer of a collisionless, high β, supercritical, quasi‐perpendicular shock wave: 1. Rankine‐Hugoniot geometry, currents, and stationarity , 1986 .

[21]  A. E. Robson,et al.  Influence of Reflected Ions on the Magnetic Structure of a Collisionless Shock Front , 1972 .

[22]  Lou‐Chuang Lee,et al.  Rotational discontinuities and the structure of the magnetopause , 1983 .

[23]  D. Gorney An alternative interpretation of ion ring distributions observed by the S3‐3 satellite , 1983 .

[24]  E. Ott,et al.  Theory and Simulation of Turbulent Heating by the Modified Two-Stream Instability. , 1972 .

[25]  R. Mason Ion and Electron Pressure Effects on Magnetosonic Shock Formation , 1972 .

[26]  Derek A. Tidman,et al.  Shock waves in collisionless plasmas , 1971 .

[27]  John M. Dawson,et al.  Self‐consistent study of a perpendicular collisionless and nonresistive shock , 1987 .

[28]  J. Kan,et al.  Structure of the quasi‐parallel bow shock: Results of numerical simulations , 1983 .

[29]  Michelle F. Thomsen,et al.  Ion and electron heating at collisionless shocks near the critical Mach number , 1985 .

[30]  C. Russell,et al.  Evolution of ion distributions across the nearly perpendicular bow shock: Specularly and non‐specularly reflected‐gyrating ions , 1983 .

[31]  Y. Ohsawa Strong ion acceleration by a collisionless magnetosonic shock wave propagating perpendicularly to a magnetic field , 1985 .

[32]  D. Biskamp,et al.  Numerical studies of magnetosonic collisionless shock waves , 1972 .