How to Measure Galaxy Star Formation Histories. II. Nonparametric Models

Parametric models for galaxy star-formation histories (SFHs) are widely used, though they are known to impose strong priors on physical parameters. This has consequences for measurements of the galaxy stellar-mass function (GSMF), star-formation-rate density (SFRD) and star-forming main sequence (SFMS). We investigate the effects of the exponentially declining, delayed exponentially declining, lognormal and double power law SFH models using BAGPIPES. We demonstrate that each of these models imposes strong priors on specific star-formation rates (sSFRs), potentially biasing the SFMS, and also imposes a strong prior preference for young stellar populations. We show that stellar mass, SFR and mass-weighted age inferences from high-quality mock photometry vary with the choice of SFH model by at least 0.1, 0.3 and 0.2 dex respectively. However the biases with respect to the true values depend more on the true SFH shape than the choice of model. We also demonstrate that photometric data cannot discriminate between SFH models, meaning it is important to perform independent tests to find well-motivated priors. We finally fit a low-redshift, volume-complete sample of galaxies from the Galaxy and Mass Assembly (GAMA) Survey with each model. We demonstrate that our stellar masses and SFRs at redshift, $z\sim0.05$ are consistent with other analyses. However, our inferred cosmic SFRDs peak at $z\sim0.4$, approximately 6 Gyr later than direct observations suggest, meaning our mass-weighted ages are significantly underestimated. This makes the use of parametric SFH models for understanding mass assembly in galaxies challenging. In a companion paper we consider non-parametric SFH models.

[1]  P. Hopkins,et al.  MUFASA: Galaxy Formation Simulations With Meshless Hydrodynamics , 2016, 1604.01418.

[2]  C. Conroy Modeling the Panchromatic Spectral Energy Distributions of Galaxies , 2013, 1301.7095.

[3]  M. Boquien,et al.  Ultraviolet to infrared emission of z > 1 galaxies: Can we derive reliable star formation rates and stellar masses? , 2013, 1310.7712.

[4]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[5]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[6]  P. Hopkins,et al.  RECOVERING STELLAR POPULATION PROPERTIES AND REDSHIFTS FROM BROADBAND PHOTOMETRY OF SIMULATED GALAXIES: LESSONS FOR SED MODELING , 2009, 0901.4337.

[7]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[8]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[9]  V. Wild,et al.  The VANDELS ESO public spectroscopic survey: Observations and first data release , 2018, Astronomy & Astrophysics.

[10]  T. Yuan,et al.  A massive, quiescent galaxy at a redshift of 3.717 , 2017, Nature.

[11]  A. Dressler,et al.  THE IMACS CLUSTER BUILDING SURVEY. IV. THE LOG-NORMAL STAR FORMATION HISTORY OF GALAXIES , 2013, 1303.3917.

[12]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[13]  S. Bamford,et al.  Galaxy And Mass Assembly: The G02 field, Herschel-ATLAS target selection and data release 3 , 2017, 1711.09139.

[14]  A. Heavens,et al.  Recovering galaxy star formation and metallicity histories from spectra using VESPA , 2007, 0704.0941.

[15]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[16]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[17]  R. Davé,et al.  Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms , 2017, Monthly Notices of the Royal Astronomical Society.

[18]  H. Ferguson,et al.  BREAKING THE CURVE WITH CANDELS: A BAYESIAN APPROACH TO REVEAL THE NON-UNIVERSALITY OF THE DUST-ATTENUATION LAW AT HIGH REDSHIFT , 2015, 1512.05396.

[19]  M. Dickinson,et al.  GALEX–SDSS–WISE LEGACY CATALOG (GSWLC): STAR FORMATION RATES, STELLAR MASSES, AND DUST ATTENUATIONS OF 700,000 LOW-REDSHIFT GALAXIES , 2016, 1610.00712.

[20]  Heidelberg,et al.  A census of metals and baryons in stars in the local universe , 2007, 0708.0533.

[21]  M. Cappellari Improving the full spectrum fitting method: accurate convolution with Gauss-Hermite functions , 2016, 1607.08538.

[22]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[23]  C. Steidel,et al.  THE CHARACTERISTIC STAR FORMATION HISTORIES OF GALAXIES AT REDSHIFTS z ∼ 2–7 , 2012, 1205.0555.

[24]  G. Kauffmann,et al.  First results from the IllustrisTNG simulations: the galaxy colour bimodality , 2017, 1707.03395.

[25]  D. Foreman-Mackey,et al.  python-fsps: Python bindings to FSPS (v0.1.1) , 2014 .

[26]  T. Yuan,et al.  Near infrared spectroscopy and star-formation histories of 3 ≤ z ≤ 4 quiescent galaxies , 2018, Astronomy & Astrophysics.

[27]  S. Bamford,et al.  GAMA: towards a physical understanding of galaxy formation , 2009, 0910.5123.

[28]  A. Heavens,et al.  The star formation histories of galaxies in the sloan digital sky survey , 2006, astro-ph/0608531.

[29]  Samuel N. Leitner ON THE LAST 10 BILLION YEARS OF STELLAR MASS GROWTH IN STAR-FORMING GALAXIES , 2011, 1108.0938.

[30]  I. Paris,et al.  STECMAP: STEllar Content from high-resolution galactic spectra via Maximum A Posteriori , 2005, astro-ph/0505209.

[31]  R. Davé,et al.  THE EVOLUTION OF STAR FORMATION HISTORIES OF QUIESCENT GALAXIES , 2016, 1609.03572.

[32]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[33]  Benjamin D. Johnson,et al.  Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe , 2016, 1609.09073.

[34]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[35]  J. Cohn Approximations to galaxy star formation rate histories: properties and uses of two examples , 2018, 1802.06197.

[36]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): mass–size relations of z < 0.1 galaxies subdivided by Sérsic index, colour and morphology , 2014, 1411.6355.

[37]  D. Elbaz,et al.  Constraining the properties of AGN host galaxies with spectral energy distribution modelling , 2015, 1501.03672.

[38]  P. Torrey,et al.  Log-normal Star Formation Histories in Simulated and Observed Galaxies , 2017, 1701.02308.

[39]  On the mass function of star clusters , 2002, astro-ph/0207514.

[40]  A. Heavens,et al.  Star formation and metallicity history of the SDSS galaxy survey: unlocking the fossil record , 2002, astro-ph/0211546.

[41]  V. A. Bruce,et al.  Characterizing the evolving K-band luminosity function using the UltraVISTA, CANDELS and HUDF surveys , 2016, 1610.06574.

[42]  The Complete Star Formation History of the Universe , 2004, astro-ph/0403293.

[43]  E. Gawiser,et al.  SPECTRAL ENERGY DISTRIBUTION FITTING WITH MARKOV CHAIN MONTE CARLO: METHODOLOGY AND APPLICATION TO z = 3.1 Lyα-EMITTING GALAXIES , 2011, 1101.2215.

[44]  A. Hopkins,et al.  Galaxy And Mass Assembly: accurate panchromatic photometry from optical priors using lambdar , 2016 .

[45]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[46]  H. Rix,et al.  On the importance of using appropriate spectral models to derive physical properties of galaxies at 0.7 < z < 2.8 , 2014, 1411.5689.

[47]  H. Rix,et al.  Simulating and interpreting deep observations in the Hubble Ultra Deep Field with theJWST/NIRSpec low-resolution ‘prism’ , 2017, Monthly Notices of the Royal Astronomical Society.

[48]  Jordi Cepa,et al.  ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3 , 2011, 1106.5502.

[49]  V. Wild,et al.  Stellar Populations of over 1000 z ∼ 0.8 Galaxies from LEGA-C: Ages and Star Formation Histories from Dn4000 and Hδ , 2018, 1802.06799.

[50]  R. Wechsler,et al.  THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ⩽ z ⩽ 6.5 IN CANDELS , 2014, 1407.6012.

[51]  Matthew Colless,et al.  GAMA/G10-COSMOS/3D-HST: the 0 < z < 5 cosmic star formation history, stellar-mass, and dust-mass densities , 2017, 1710.06628.

[52]  S. Bamford,et al.  Galaxy And Mass Assembly: Stellar Mass Estimates , 2011, 1108.0635.

[53]  V. Wild,et al.  The VANDELS ESO public spectroscopic survey , 2018, 1803.07414.

[54]  S. Charlot,et al.  Modelling and interpreting spectral energy distributions of galaxies with BEAGLE , 2016, 1603.03037.

[55]  J. A. Vázquez-Mata,et al.  Galaxy And Mass Assembly (GAMA): Panchromatic Data Release (far-UV–far-IR) and the low-z energy budget , 2015, 1508.02076.

[56]  P. Best,et al.  Predicting dust extinction from the stellar mass of a galaxy , 2010, 1007.1145.

[57]  E. Gawiser,et al.  Reconstruction of Galaxy Star Formation Histories through SED Fitting:The Dense Basis Approach , 2017, 1702.04371.

[58]  P. Dokkum,et al.  RECONCILING THE OBSERVED STAR-FORMING SEQUENCE WITH THE OBSERVED STELLAR MASS FUNCTION , 2014, 1407.1842.

[59]  Tucson,et al.  Erratum: Recovering galaxy stellar population properties from broad-band spectral energy distribution fitting , 2012, 1203.3548.

[60]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[61]  A. Fontana,et al.  A CRITICAL ASSESSMENT OF STELLAR MASS MEASUREMENT METHODS , 2015, 1505.01501.

[62]  J. Brinchmann,et al.  Relative merits of different types of rest-frame optical observations to constrain galaxy physical parameters , 2012, 1201.0780.

[63]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[64]  D. Elbaz,et al.  Chasing passive galaxies in the early Universe: a critical analysis in CANDELS GOODS-South , 2017, 1709.00429.

[65]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[66]  H. Ferguson,et al.  BIASES AND UNCERTAINTIES IN PHYSICAL PARAMETER ESTIMATES OF LYMAN BREAK GALAXIES FROM BROADBAND PHOTOMETRY , 2008, 0812.5111.

[67]  J. Dunlop,et al.  A robust sample of galaxies at redshifts 6.0 , 2011, 1102.4881.

[68]  D. Elbaz,et al.  The SFR-M ∗ main sequence archetypal star-formation history and analytical models , 2017, 1706.08531.

[69]  Edinburgh,et al.  The evolution of post-starburst galaxies from z=2 to 0.5 , 2016, 1608.00588.

[70]  S. E. Persson,et al.  GALAXY STELLAR MASS FUNCTIONS FROM ZFOURGE/CANDELS: AN EXCESS OF LOW-MASS GALAXIES SINCE z = 2 AND THE RAPID BUILDUP OF QUIESCENT GALAXIES , 2013, 1309.5972.

[71]  H. Rix,et al.  Star Formation Histories of z ∼ 1 Galaxies in LEGA-C , 2018, The Astrophysical Journal.

[72]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): The galaxy stellar mass function to $z=0.1$ from the r-band selected equatorial regions , 2017, 1705.04074.

[73]  L. Sodré,et al.  Semi‐empirical analysis of Sloan Digital Sky Survey galaxies – I. Spectral synthesis method , 2005 .

[74]  P. McCarthy,et al.  DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 ⩽ z ⩽ 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY , 2012, 1206.1867.

[75]  F. Simpson,et al.  Strong Bayesian evidence for the normal neutrino hierarchy , 2017, 1703.03425.

[76]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[77]  B. Garilli,et al.  The extended epoch of galaxy formation: age dating of ~3600 galaxies with 2 , 2016, 1602.01841.