The lamellar spacing in self-assembling bacteriochlorophyll aggregates is proportional to the length of the esterifying alcohol

[1]  R. Tuma,et al.  Structure of Chlorosomes from the Green Filamentous Bacterium Chloroflexus aurantiacus , 2009, Journal of bacteriology.

[2]  Donald A. Bryant,et al.  Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes , 2009, Proceedings of the National Academy of Sciences.

[3]  J. Kopecký,et al.  The Length of Esterifying Alcohol Affects the Aggregation Properties of Chlorosomal Bacteriochlorophylls , 2008, Photochemistry and photobiology.

[4]  Mette Miller,et al.  The three‐dimensional structure of CsmA: A small antenna protein from the green sulfur bacterium Chlorobium tepidum , 2008, FEBS letters.

[5]  J. Alster,et al.  Effect of quinones on formation and properties of bacteriochlorophyll c aggregates , 2008, Photosynthesis Research.

[6]  Roman Tuma,et al.  Hexanol-induced order-disorder transitions in lamellar self-assembling aggregates of bacteriochlorophyll c in Chlorobium tepidum chlorosomes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[7]  G. Oostergetel,et al.  Long‐range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo‐electron microscopy , 2007, FEBS letters.

[8]  R. Tuma,et al.  X-ray scattering and electron cryomicroscopy study on the effect of carotenoid biosynthesis to the structure of Chlorobium tepidum chlorosomes. , 2007, Biophysical journal.

[9]  T. Fujiwara,et al.  Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR , 2007, Proceedings of the National Academy of Sciences.

[10]  Roman Tuma,et al.  Internal structure of chlorosomes from brown-colored chlorobium species and the role of carotenoids in their assembly. , 2006, Biophysical journal.

[11]  T. Miyatake,et al.  Self-aggregates of bacteriochlorophylls-c, d and e in a light-harvesting antenna system of green photosynthetic bacteria: Effect of stereochemistry at the chiral 3-(1-hydroxyethyl) group on the supramolecular arrangement of chlorophyllous pigments , 2005 .

[12]  T. Balaban Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. , 2005, Accounts of chemical research.

[13]  J. B. Arellano,et al.  Effect of Carotenoids and Monogalactosyl Diglyceride on Bacteriochlorophyll c Aggregates in Aqueous Buffer: Implications for the Self-assembly of Chlorosomes¶ , 2004 .

[14]  J. B. Arellano,et al.  Effect of Carotenoids and Monogalactosyl Diglyceride on Bacteriochlorophyll c Aggregates in Aqueous Buffer: Implications for the Self‐assembly of Chlorosomes ¶ , 2004, Photochemistry and photobiology.

[15]  R. Tuma,et al.  Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. , 2004, Biophysical journal.

[16]  E. Vassilieva,et al.  Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmX. , 2002, Biochemistry.

[17]  C. Borrego,et al.  Nanosecond Laser Photolysis Studies of Chlorosomes and Artificial Aggregates Containing Bacteriochlorophyll e: Evidence for the Proximity of Carotenoids and Bacteriochlorophyll a in Chlorosomes from Chlorobium phaeobacteroides strain CL1401¶ , 2000 .

[18]  H. Wackerbarth,et al.  Diastereoselective Control of Bacteriochlorophyll e Aggregation. 31-S-BChl e Is Essential for the Formation of Chlorosome-Like Aggregates , 2000 .

[19]  T. Nozawa,et al.  How the formation process influences the structure of BChl c aggregates , 1999, Photosynthesis Research.

[20]  T. Balaban,et al.  Multidimensional CP-MAS 13C NMR of uniformly enriched chlorophyll , 1998 .

[21]  D. Bryant,et al.  Characterization of the csmD and csmE genes from Chlorobium tepidum. The CsmA, CsmC, CsmD, and CsmE proteins are components of the chlorosome envelope , 1996, Photosynthesis Research.

[22]  T. Gillbro,et al.  Bacteriochlorophyll organization and energy transfer kinetics in chlorosomes from Chloroflexus aurantiacus depend on the light regime during growth , 1996, Photosynthesis Research.

[23]  R. P. Cox,et al.  Effects of illumination intensity on bacteriochlorophyllc homolog distribution inChloroflexus aurantiacus grown under controlled conditions , 1994, Photosynthesis Research.

[24]  T. Nozawa,et al.  Structures of chlorosomes and aggregated BChlc inChlorobium tepidum from solid state high resolution CP/MAS13C NMR , 1994, Photosynthesis Research.

[25]  X. Vila,et al.  Effects of light quality on the physiology and the ecology of planktonic green sulfur bacteria in lakes , 1994, Photosynthesis Research.

[26]  J. Olson,et al.  High degree of organization of bacteriochlorophyll c in chlorosome-like aggregates spontaneously assembled in aqueous solution , 1992 .

[27]  Carl R. Woese,et al.  A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. , 1991, Archives of Microbiology.

[28]  Kevin M. Smith,et al.  Aggregation of the bacteriochlorophylls c, d, and e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria , 1983 .

[29]  K. Schmidt,et al.  Development and pigmentation of chlorosomes in Chloroflexus aurantiacus strain Ok-70-fl , 1980, Archives of Microbiology.

[30]  D. Bryant,et al.  Chlorosomes: Antenna Organelles in Photosynthetic Green Bacteria , 2006 .

[31]  T. Gillbro,et al.  Excitation energy transfer in chlorosomes of Chlorobium phaeobacteroides strain CL1401: the role of carotenoids , 2004, Photosynthesis Research.

[32]  T. Gillbro,et al.  The Role of Bacteriochlorophyll e and Carotenoids in Light Harvesting in Brown-Colored Green Sulfur Bacteria , 1998 .

[33]  R. Castenholz,et al.  Ecology of Thermophilic Anoxygenic Phototrophs , 1995 .

[34]  J. Olson,et al.  Antenna Complexes from Green Photosynthetic Bacteria , 1995 .