A novel grain cluster-based homogenization scheme
暂无分享,去创建一个
[1] Surya R. Kalidindi,et al. Quantitative prediction of textures in aluminium cold rolled to moderate strains , 2002 .
[2] P. Houtte,et al. QUANTITATIVE PREDICTION OF COLD ROLLING TEXTURES IN LOW-CARBON STEEL BY MEANS OF THE LAMEL MODEL , 1999 .
[3] Bernard Brunhes,et al. W. VOIGT. — Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper (Sur le rapport entre les deux coefficients d'élasticité des corps isotropes); Wied. Ann., t. XXXVIII, p. 573 , 1890 .
[4] R. Hill. Elastic properties of reinforced solids: some theoretical principles , 1963 .
[5] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[6] R. Asaro,et al. Overview no. 42 Texture development and strain hardening in rate dependent polycrystals , 1985 .
[7] J. Chaboche,et al. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .
[8] V. Kouznetsova,et al. Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .
[9] Ricardo A. Lebensohn,et al. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .
[10] Morton E. Gurtin,et al. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations , 2002 .
[11] Surya R. Kalidindi,et al. Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction , 2002 .
[12] Alan Needleman,et al. Material rate dependence and localized deformation in crystalline solids , 1983 .
[13] R. Bullough,et al. Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[14] L. Anand,et al. Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[15] R. Lebensohn. N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform , 2001 .
[16] Hervé Moulinec,et al. A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.
[17] L. Anand,et al. Crystallographic texture evolution in bulk deformation processing of FCC metals , 1992 .
[18] W. Voigt. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .
[19] J. Schröder,et al. Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials , 1999 .
[20] D. Parks,et al. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density , 1999 .
[21] J. Nye. Some geometrical relations in dislocated crystals , 1953 .
[22] R. Kopp,et al. Through-process texture modelling of aluminium alloys , 2004 .
[23] G. Gottstein,et al. Modelling of recrystallisation textures in aluminium alloys: I. Model set-up and integration , 2006 .
[24] W. Brekelmans,et al. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling , 1998 .
[25] D. Parks,et al. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation , 2002 .
[26] G. Gottstein,et al. Modelling of recrystallisation textures in aluminium alloys: II. Model performance and experimental validation , 2006 .
[27] Paul Van Houtte,et al. Deformation texture prediction: from the Taylor model to the advanced Lamel model , 2005 .
[28] P. Houtte,et al. Application of the Lamel model for simulating cold rolling texture in molybdenum sheet , 2002 .
[29] Fpt Frank Baaijens,et al. An approach to micro-macro modeling of heterogeneous materials , 2001 .
[30] F. Roters,et al. Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes , 2009 .
[31] D. Hull,et al. Introduction to Dislocations , 1968 .
[32] S. Ahzi,et al. A self consistent approach of the large deformation polycrystal viscoplasticity , 1987 .
[33] M. Lambrecht,et al. Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals , 2002 .
[34] Dierk Raabe,et al. Texture simulation for hot rolling of aluminium by use of a Taylor model considering grain interactions , 1995 .
[35] P. Van Houtte,et al. A Comprehensive Mathematical Formulation of an Extended Taylor–Bishop–Hill Model Featuring Relaxed Constraints, the Renouard–WintenbergerTheory and a Strain Rate Sensitivity Model , 1988 .