Semi-active vibration suppression of a space truss structure using a fault tolerant controller

In recent years, magneto-rheological (MR) dampers have been used to control the response of structures. This paper presents the design and application of an H∞ fault detection and isolation (FDI) filter and fault tolerant controller (FTC) for truss vibration control systems using MR dampers. A linear matrix inequality formulation is used to design a full order robust H∞ filter to estimate faulty input signals. A fault tolerant H∞ controller is designed for the combined system of plant and filter, minimizing the control objective selected in the presence of disturbances and faults. A truss structure with an MR damper is used to validate the FDI and FTC controller design through numerical simulations. The residuals obtained from the filter through simulation clearly identify the fault signals. The simulation results of the proposed FTC controller confirm its effectiveness for vibration suppression of the faulty truss system.

[1]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[2]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[3]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[4]  B. R. Upadhyaya,et al.  Fault-tolerant control and diagnostics for large-scale systems , 1995 .

[5]  K. Grigoriadis Optimal H ∞ model reduction via linear matrix inequalities: continuous- and discrete-time cases , 1995 .

[6]  J. Geromel,et al.  Convex analysis of output feedback control problems: robust stability and performance , 1996, IEEE Trans. Autom. Control..

[7]  Karolos M. Grigoriadis,et al.  Low-order control design for LMI problems using alternating projection methods , 1996, Autom..

[8]  Billie F. Spencer,et al.  Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction , 1996 .

[9]  S.J. Dyke,et al.  A comparison of semi-active control strategies for the MR damper , 1997, Proceedings Intelligent Information Systems. IIS'97.

[10]  Shirley J. Dyke,et al.  PHENOMENOLOGICAL MODEL FOR MAGNETORHEOLOGICAL DAMPERS , 1997 .

[11]  M. Sain,et al.  “ Smart ” Dampers for Seismic Protection of Structures : A Full-Scale Study , 1998 .

[12]  Karolos M. Grigoriadis,et al.  Integrated structural and control design for vector second-order systems via LMIs , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[13]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[14]  Jason L. Speyer,et al.  H Bounded Fault Detection Filter , 1999 .

[15]  Hyun-Ung Oh,et al.  An experimental study of a semiactive magneto-rheological fluid variable damper for vibration suppression of truss structures , 2002 .

[16]  T. IWASAKIt,et al.  All Controllers for the General Control Problem : LMI Existence Conditions and State Space Formulas * , 2002 .

[17]  Takao Watanabe,et al.  A unified algebraic approach to linear control design: Robert E. Skelton, Tetsuya Iwasaki and Karolos M. Grigoriadis; Copyright Taylor & Francis, 1998, ISBN: 0-7484-0592-5 , 2003, Autom..

[18]  Norio Iwata,et al.  Dynamic tests and simulation of magneto-rheological dampers , 2003 .

[19]  D. Sauter,et al.  Fault tolerant control using augmented fault detection filter , 2004, 2004 IEEE International Symposium on Industrial Electronics.

[20]  Zhiguo Chang,et al.  Studies on structural vibration control with MR dampers using μGA , 2004, Proceedings of the 2004 American Control Conference.

[21]  Demba Diallo,et al.  A fault-tolerant control architecture for induction motor drives in automotive applications , 2004, IEEE Transactions on Vehicular Technology.

[22]  Midori Maki,et al.  A stability guaranteed active fault‐tolerant control system against actuator failures , 2004 .

[23]  Satish Nagarajaiah,et al.  Actuator Failure Detection Through Interaction Matrix Formulation , 2005 .

[24]  Karolos M. Grigoriadis,et al.  H∞ collocated control of structural systems : An analytical bound approach , 2005 .

[25]  Satish Nagarajaiah,et al.  Real-Time Structural Damage Monitoring by Input Error Function , 2005 .

[26]  Gangbing Song,et al.  Non-model based vibration control of stay cables using magneto-rheological damper , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[27]  Satish Nagarajaiah,et al.  Detecting Sensor Failure via Decoupled Error Function and Inverse Input–Output Model , 2007 .

[28]  Satish Nagarajaiah,et al.  Linear-Matrix-Inequality-Based Robust Fault Detection and Isolation Using the Eigenstructure Assignment Method , 2007 .

[29]  Satish Nagarajaiah,et al.  H_{-}/H_{infty } structural damage detection filter design using an iterative linear matrix inequality approach , 2008 .

[30]  S. Narasimhan,et al.  On-Line Learning Failure-Tolerant Neural-Aided Controller for Earthquake Excited Structures , 2008 .

[31]  G. Song,et al.  A Genetic Algorithm-based Two-phase Design for Optimal Placement of Semi-active Dampers for Nonlinear Benchmark Structure , 2010 .

[32]  Gangbing Song,et al.  Fault detection and fault tolerant control of a smart base isolation system with magneto-rheological damper , 2011 .