Bayesian optimal reconstruction of the primordial power spectrum

The form of the primordial power spectrum has the potential to differentiate strongly between competing models of perturbation generation in the early universe and so is of considerable importance. The recent release of five years of WMAP observat ions have confirmed the general picture of the primordial power spectrum as deviating s lightly from scale invariance with a spectral tilt parameter of ns � 0:96. Nonetheless, many attempts have been made to isolate further features such as breaks and cutoffs using a variety o f methods, some employing more than� 10 varying parameters. In this paper we apply the robust techni que of Bayesian model selection to reconstruct the optimal degree of structure in the spectrum. We model the spectrum simply and generically as piecewise linear in ln k between ‘nodes’ in k-space whose amplitudes are allowed to vary. The number of nodes and their k-space positions are chosen by the Bayesian evidence so that we can identify both the complexity and location of any detected features. Our optimal reconstruction contains, p erhaps, surprisingly few features, the data preferring just three nodes. This reconstruction allo ws for a degree of scale dependence of the tilt with the ‘turn-over’ scale occuring around k � 0:016 Mpc 1 . More structure is penalised by the evidence as over-fitting the data, so there is c urrently little point in attempting reconstructions that are more complex.

[1]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[2]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[3]  W. C. Jones,et al.  A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507494.

[4]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[5]  A Bayesian analysis of the primordial power spectrum , 2005, astro-ph/0511573.

[6]  Smoothing spline primordial power spectrum reconstruction , 2005, astro-ph/0506707.

[7]  A. Lasenby,et al.  WMAP 3-yr primordial power spectrum , 2006, astro-ph/0607404.

[8]  Model-independent reconstruction of the primordial power spectrum from WMAP data , 2003, astro-ph/0303211.

[9]  Matias Zaldarriaga,et al.  Significance of the largest scale CMB fluctuations in WMAP , 2003, astro-ph/0307282.

[10]  Cosmological parameters from combining the Lyman-α forest with CMB, galaxy clustering and SN constraints , 2006, astro-ph/0604335.

[11]  P. A. R. Ade,et al.  A Measurement of the CMB EE Spectrum from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507514.

[12]  Tarun Souradeep,et al.  Primordial power spectrum from WMAP , 2004 .

[13]  J. Weller,et al.  Reconstructing the primordial power spectrum , 2003, astro-ph/0302306.

[14]  Hiranya V. Peiris,et al.  ournal of C osmology and A stroparticle hysics J On minimally parametric primordial power spectrum reconstruction and the evidence for a red tilt , 2022 .

[15]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[16]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[17]  J. R. Bond,et al.  Extended Mosaic Observations with the Cosmic Background Imager , 2004 .

[18]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[19]  Jérôme Martin,et al.  Cosmological parameter estimation and the inflationary cosmology , 2002, astro-ph/0202094.

[20]  H. Jeffreys,et al.  The Theory of Probability , 1896 .

[21]  M. Kunz,et al.  Measuring the effective complexity of cosmological models , 2006, astro-ph/0602378.

[22]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003 .

[23]  Nutan Rajguru,et al.  Bayesian evidence as a tool for comparing datasets , 2006 .

[24]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[25]  M. P. Hobson,et al.  Combining cosmological data sets: hyperparameters and Bayesian evidence , 2002 .

[26]  H. Peiris,et al.  Preprint typeset in JHEP style- HYPER VERSION Slow Roll Reconstruction: Constraints on Inflation , 2006 .

[27]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[28]  E. Gaztañaga,et al.  On the APM power spectrum and the CMB anisotropy: evidence for a phase transition during inflation? , 2000, astro-ph/0011398.

[29]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[30]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[31]  Max Tegmark,et al.  High resolution foreground cleaned CMB map from WMAP , 2003, astro-ph/0302496.

[32]  S Masi,et al.  A Measurement of the Polarization-Temperature Angular Cross-Power Spectrum of the Cosmic Microwave Background from the 2003 Flight of BOOMERANG , 2006 .

[33]  M. Douspis,et al.  A new search for features in the primordial power spectrum , 2004, astro-ph/0402583.

[34]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[35]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[36]  P. A. R. Ade,et al.  HIGH-RESOLUTION CMB POWER SPECTRUM FROM THE COMPLETE ACBAR DATA SET , 2008, 0801.1491.

[37]  R. Trotta Applications of Bayesian model selection to cosmological parameters , 2005, astro-ph/0504022.