Long Time Behavior and Global Dynamics of Simplified Von Karman Plate Without Rotational Inertia Driven by White Noise

Without the assumption that the coefficient of weak damping is large enough, the existence of the global random attractors for simplified Von Karman plate without rotational inertia driven by either additive white noise or multiplicative white noise are proved. Instead of the classical splitting method, the techniques to verify the asymptotic compactness rely on stabilization estimation of the system. Furthermore, a clear relationship between in-plane components of the external force that act on the edge of the plate and the expectation of radius of the global random attractors can be obtained from the theoretical results. Based on the relationship between global random attractor and random probability invariant measure, the global dynamics of the plates are analyzed numerically. With increasing the in-plane components of the external force that act on the edge of the plate, global D-bifurcation, secondary globalD-bifurcation and complex local dynamical behavior occur in motion of the system. Moreover, increasing the intensity of white noise leads to the dynamical behavior becoming simple. The results on global dynamics reveal that random snap-through which seems to be a complex dynamics intuitively is essentially a simple dynamical behavior.

[1]  Haiwu Rong,et al.  Stochastic bifurcation in duffing system subject to harmonic excitation and in presence of random noise , 2004 .

[2]  Jong Yeoul Park,et al.  Uniform decay for a von Karman plate equation with a boundary memory condition , 2005 .

[3]  G. Burton Sobolev Spaces , 2013 .

[4]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[5]  A.Kh. Khanmamedov,et al.  Global attractors for von Karman equations with nonlinear interior dissipation , 2006 .

[6]  Hans Crauel,et al.  Random attractors , 1997 .

[7]  Giovanni Muscato,et al.  A roll stabilization system for a monohull ship: modeling, identification, and adaptive control , 1996, IEEE Trans. Control. Syst. Technol..

[8]  Jae-Sang Park,et al.  Thermal postbuckling and vibration analyses of functionally graded plates , 2006 .

[9]  H. Crauel,et al.  Attractors for random dynamical systems , 1994 .

[10]  Hans Crauel,et al.  Additive Noise Destroys a Pitchfork Bifurcation , 1998 .

[11]  Igor Chueshov,et al.  Attractors for Second-Order Evolution Equations with a Nonlinear Damping , 2004 .

[12]  Xiaoming Fan,et al.  Attractors for a Damped Stochastic Wave Equation of Sine–Gordon Type with Sublinear Multiplicative Noise , 2006 .

[13]  Iryna Ryzhkova,et al.  Dynamics of a thermoelastic von Kármán plate in a subsonic gas flow , 2007 .

[14]  Stephen Wiggins,et al.  On the existence of chaos in a class of two-degree-of-freedom, damped, strongly parametrically forced mechanical systems with brokenO(2) symmetry , 1993 .

[15]  Hugo Leiva,et al.  Existence, stability and smoothness of a bounded solution for nonlinear time-varying thermoelastic plate equations , 2003 .

[16]  Shengfan Zhou,et al.  Random Attractor for Damped Nonlinear Wave Equations with White Noise , 2005, SIAM J. Appl. Dyn. Syst..

[17]  Sun Hye Park Long-time dynamics of a von Karman equation with time delay , 2018, Appl. Math. Lett..

[18]  V. V. Chepyzhov,et al.  Dimension estimates for attractors and for kernel sections of non-autonomous evolution equations , 1993 .

[19]  Tomás Caraballo,et al.  A stochastic pitchfork bifurcation in a reaction-diffusion equation , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Ahmed A. Shabana,et al.  Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements , 2018 .

[21]  C. Hsu A theory of cell-to-cell mapping dynamical systems , 1980 .

[22]  Ahmed A. Shabana,et al.  Rational ANCF Thin Plate Finite Element , 2016 .

[23]  Hans Crauel,et al.  Random Point Attractors Versus Random Set Attractors , 2001 .

[24]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[25]  Peter W. Bates,et al.  Random attractors for stochastic reaction–diffusion equations on unbounded domains , 2009 .

[26]  Ahmed A. Shabana,et al.  A New Ancf/CRBF Fully Parameterized Plate Finite Element , 2017 .

[27]  Marco Amabili,et al.  Nonlinear vibrations of viscoelastic rectangular plates , 2016 .

[28]  Lasiecka Irena,et al.  Weak, classical and intermediate solutions to full von karman system of dynamic nonlinear elasticity , 1998 .

[29]  Irena Lasiecka,et al.  Global existence, uniqueness and regularity of solutions to a von Kármán system with nonlinear boundary dissipation , 1996, Differential and Integral Equations.

[30]  Songmu Zheng,et al.  Nonlinear evolution equations , 2004 .

[31]  Mohammad Mehdi Rashidi,et al.  Homotopy perturbation study of nonlinear vibration of Von Karman rectangular plates , 2012 .

[32]  Yuncheng You Global Attractor for Nonlinear Wave Equations with Critical Exponent on Unbounded Domain , 2016 .

[33]  Wei Zhang Global and chaotic dynamics for a parametrically excited thin plate , 2001 .

[34]  Gabriele Bleckert,et al.  The Stochastic Brusselator: Parametric Noise Destroys Hoft Bifurcation , 1999 .

[35]  Enrique Ponce,et al.  Bifurcation Analysis of Hysteretic Systems with Saddle Dynamics , 2017 .

[36]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[37]  Marco Amabili,et al.  Nonlinear dynamics of axially moving plates , 2013 .

[38]  M. Amabili,et al.  Nonlinear vibrations of FGM rectangular plates in thermal environments , 2011 .

[39]  Domenico Guida,et al.  Use of the Adjoint Method for Controlling the Mechanical Vibrations of Nonlinear Systems , 2018 .

[40]  Marco Amabili,et al.  Nonlinear Vibrations and Stability of Shells and Plates , 2008 .

[41]  Xiaoming Fan,et al.  Attractors for the stochastic reaction–diffusion equation driven by linear multiplicative noise with a variable coefficient , 2013 .

[42]  Klaus Reiner Schenk-Hoppé,et al.  Random attractors--general properties, existence and applications to stochastic bifurcation theory , 1997 .

[43]  Domenico Guida,et al.  System Identification Algorithm for Computing the Modal Parameters of Linear Mechanical Systems , 2018 .

[44]  Irena Lasiecka,et al.  Uniform decay rates for full von karman system of dynamic theromelasticity with free boundary conditions and partial boundary dissipation , 1999 .

[45]  Bixiang Wang,et al.  Existence, Stability and Bifurcation of Random Complete and Periodic Solutions of Stochastic Parabolic Equations , 2013, 1304.4884.

[46]  J. Lagnese Boundary Stabilization of Thin Plates , 1987 .

[47]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[48]  Irena Lasiecka,et al.  Eliminating flutter for clamped von Karman plates immersed in subsonic flows , 2014 .

[49]  L. Arnold Random Dynamical Systems , 2003 .

[50]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[51]  Igor Chueshov,et al.  Attractors for Delayed, Nonrotational von Karman Plates with Applications to Flow-Structure Interactions Without any Damping , 2012, 1208.5245.

[52]  R. Temam,et al.  Nonlinear Galerkin methods , 1989 .

[53]  Hans Crauel,et al.  Global random attractors are uniquely determined by attracting deterministic compact sets , 1999 .

[54]  M. Ghayesh,et al.  Nonlinear dynamics of microplates , 2015 .

[55]  Gunter Ochs,et al.  Numerical Approximation of Random Attractors , 1999 .

[56]  Maria Giovanna Mora,et al.  The time-dependent von Kármán plate equation as a limit of 3d nonlinear elasticity , 2009, 0912.4135.

[57]  Chueshov Igor,et al.  Inertial Manifolds for von Karman Plate Equations , 2002 .

[58]  Roger Temam,et al.  Some new generalizations of inertial manifolds , 1996 .

[59]  J. Awrejcewicz,et al.  Analysis of complex parametric vibrations of plates and shells using Bubnov-Galerkin approach , 2003 .

[60]  Domenico Guida,et al.  On the Computational Methods for Solving the Differential-Algebraic Equations of Motion of Multibody Systems , 2018 .

[61]  Dengqing Cao,et al.  Random Attractors for Von Karman Plates Subjected to Multiplicative White Noise Loadings , 2016 .

[62]  Tomás Caraballo,et al.  Stability and random attractors for a reaction-diffusion equation with multiplicative noise , 2000 .

[63]  B. Schmalfuβ,et al.  Measure attractors and random attractors for stochastic partial differential equations , 1999 .