Computing Optimal Designs of multiresponse Experiments reduces to Second-Order Cone Programming
暂无分享,去创建一个
[1] G. Elfving. Optimum Allocation in Linear Regression Theory , 1952 .
[2] H. Wynn. The Sequential Generation of $D$-Optimum Experimental Designs , 1970 .
[3] W. J. Studden. Elfving's Theorem and Optimal Designs for Quadratic Loss , 1971 .
[4] W. J. Studden,et al. Theory Of Optimal Experiments , 1972 .
[5] J. Kiefer. General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .
[6] E. Läuter. Experimental design in a class of models , 1974 .
[7] F. Pukelsheim. On linear regression designs which maximize information , 1980 .
[8] W. J. Studden,et al. Geometry of E-Optimality , 1993 .
[9] F. Pukelsheim. Optimal Design of Experiments , 1993 .
[10] H. Dette. Elfving's Theorem for $D$-Optimality , 1993 .
[11] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[12] V. Fedorov,et al. Invited Discussion Paper Constrained Optimization of Experimental Design , 1995 .
[13] Andrej Pázman,et al. Design Measures and Extended Information Matrices for Optimal Designs when the Observations are Correlated , 1995 .
[14] Minimax Designs in Linear Regression Models , 1995 .
[15] Dennis Cook,et al. Constrained Optimization of Experimental Design , 1995 .
[16] Stephen P. Boyd,et al. Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[17] Stephen P. Boyd,et al. Applications of second-order cone programming , 1998 .
[18] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[19] Herman Chernoff,et al. Gustav Elfving's Impact on Experimental Design , 1999 .
[20] R. A. Bailey,et al. One hundred years of the design of experiments on and off the pages of Biometrika , 2001 .
[21] Sean P. Meyn,et al. Randomized algorithms for semi-infinite programming problems , 2003, 2003 European Control Conference (ECC).
[22] Luc Pronzato,et al. Removing non-optimal support points in D-optimum design algorithms , 2003 .
[23] Andrej Pazman. Correlated optimum design with parametrized covariance function. Justification of the Fisher information matrix and of the method of virtual noise. , 2004 .
[24] W. J. Studden. Elfving's Theorem Revisited , 2005 .
[25] D. Hinkley. Annals of Statistics , 2006 .
[26] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[27] Sean P. Meyn,et al. Probabilistic and Randomized Methods for Design under Uncertainty , 2006 .
[28] Luc Pronzato,et al. Improvements on removing nonoptimal support points in D-optimum design algorithms , 2007, 0706.4394.
[29] S. Gaubert,et al. Optimization of Network Traffic Measurement : A Semidefinite Programming Approach , 2008 .
[30] Guillaume Sagnol,et al. Optimization of Network Trac Measurement : A Semidenite Programming Approach , 2008 .
[31] T. Holland-Letz,et al. A geometric characterization of c-optimal designs for heteroscedastic regression , 2009, 0911.3801.
[32] Radoslav Harman,et al. Computing c-optimal experimental designs using the simplex method of linear programming , 2008, Comput. Stat. Data Anal..
[33] Holger Dette,et al. Improving updating rules in multiplicative algorithms for computing D-optimal designs , 2008, Comput. Stat. Data Anal..
[34] Guillaume Sagnol,et al. A class of semidefinite programs with rank-one solutions , 2009, 0909.5577.
[35] Peter Richtárik. Simultaneously solving seven optimization problems in relative scale , 2009 .
[36] Yaming Yu. Monotonic convergence of a general algorithm for computing optimal designs , 2009, 0905.2646.
[37] Guillaume Sagnol,et al. Optimal monitoring in large networks by Successive c-optimal Designs , 2010, 2010 22nd International Teletraffic Congress (lTC 22).