Computing Optimal Designs of multiresponse Experiments reduces to Second-Order Cone Programming

[1]  G. Elfving Optimum Allocation in Linear Regression Theory , 1952 .

[2]  H. Wynn The Sequential Generation of $D$-Optimum Experimental Designs , 1970 .

[3]  W. J. Studden Elfving's Theorem and Optimal Designs for Quadratic Loss , 1971 .

[4]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[5]  J. Kiefer General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .

[6]  E. Läuter Experimental design in a class of models , 1974 .

[7]  F. Pukelsheim On linear regression designs which maximize information , 1980 .

[8]  W. J. Studden,et al.  Geometry of E-Optimality , 1993 .

[9]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[10]  H. Dette Elfving's Theorem for $D$-Optimality , 1993 .

[11]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[12]  V. Fedorov,et al.  Invited Discussion Paper Constrained Optimization of Experimental Design , 1995 .

[13]  Andrej Pázman,et al.  Design Measures and Extended Information Matrices for Optimal Designs when the Observations are Correlated , 1995 .

[14]  Minimax Designs in Linear Regression Models , 1995 .

[15]  Dennis Cook,et al.  Constrained Optimization of Experimental Design , 1995 .

[16]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[17]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[18]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[19]  Herman Chernoff,et al.  Gustav Elfving's Impact on Experimental Design , 1999 .

[20]  R. A. Bailey,et al.  One hundred years of the design of experiments on and off the pages of Biometrika , 2001 .

[21]  Sean P. Meyn,et al.  Randomized algorithms for semi-infinite programming problems , 2003, 2003 European Control Conference (ECC).

[22]  Luc Pronzato,et al.  Removing non-optimal support points in D-optimum design algorithms , 2003 .

[23]  Andrej Pazman Correlated optimum design with parametrized covariance function. Justification of the Fisher information matrix and of the method of virtual noise. , 2004 .

[24]  W. J. Studden Elfving's Theorem Revisited , 2005 .

[25]  D. Hinkley Annals of Statistics , 2006 .

[26]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[27]  Sean P. Meyn,et al.  Probabilistic and Randomized Methods for Design under Uncertainty , 2006 .

[28]  Luc Pronzato,et al.  Improvements on removing nonoptimal support points in D-optimum design algorithms , 2007, 0706.4394.

[29]  S. Gaubert,et al.  Optimization of Network Traffic Measurement : A Semidefinite Programming Approach , 2008 .

[30]  Guillaume Sagnol,et al.  Optimization of Network Trac Measurement : A Semidenite Programming Approach , 2008 .

[31]  T. Holland-Letz,et al.  A geometric characterization of c-optimal designs for heteroscedastic regression , 2009, 0911.3801.

[32]  Radoslav Harman,et al.  Computing c-optimal experimental designs using the simplex method of linear programming , 2008, Comput. Stat. Data Anal..

[33]  Holger Dette,et al.  Improving updating rules in multiplicative algorithms for computing D-optimal designs , 2008, Comput. Stat. Data Anal..

[34]  Guillaume Sagnol,et al.  A class of semidefinite programs with rank-one solutions , 2009, 0909.5577.

[35]  Peter Richtárik Simultaneously solving seven optimization problems in relative scale , 2009 .

[36]  Yaming Yu Monotonic convergence of a general algorithm for computing optimal designs , 2009, 0905.2646.

[37]  Guillaume Sagnol,et al.  Optimal monitoring in large networks by Successive c-optimal Designs , 2010, 2010 22nd International Teletraffic Congress (lTC 22).